

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013

Tamara Munzner

Curves

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Curves

Reading

- FCG Chap 15 Curves
 - Ch 13 2nd edition

Parametric Curves

• parametric form for a line:

$$x = x_0 t + (1 - t)x_1$$
$$y = y_0 t + (1 - t)y_1$$
$$z = z_0 t + (1 - t)z_1$$

- x, y and z are each given by an equation that involves:
 - parameter *t*
 - some user specified control points, x_0 and x_1
- this is an example of a parametric curve

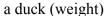
2

Splines

- a spline is a parametric curve defined by control points
 - term "spline" dates from engineering drawing, where a spline was a piece of flexible wood used to draw smooth curves
 - control points are adjusted by the user to control shape of curve

Splines - History

- draftsman used 'ducks' and strips of wood (splines) to draw curves
- wood splines have secondorder continuity, pass through the control points



ducks trace out curve

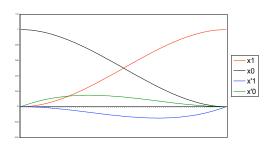
5

Hermite Spline

- hermite spline is curve for which user provides:
 - · endpoints of curve
 - parametric derivatives of curve at endpoints
 - parametric derivatives are dx/dt, dy/dt, dz/dt
 - more derivatives would be required for higher order curves

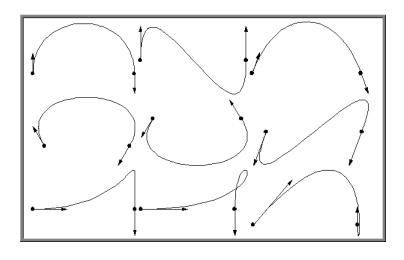
Basis Functions

- a point on a Hermite curve is obtained by multiplying each control point by some function and summing
- functions are called basis functions



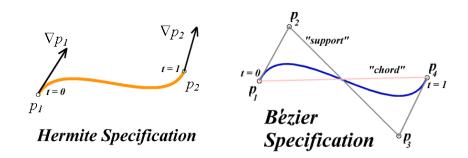
O

Sample Hermite Curves



Bézier Curves

- similar to Hermite, but more intuitive definition of endpoint derivatives
- four control points, two of which are knots



9

Bézier Curves

 derivative values of Bezier curve at knots dependent on adjacent points

$$\nabla p_1 = 3(p_2 - p_1)$$
$$\nabla p_4 = 3(p_4 - p_3)$$

Bézier Blending Functions

look at blending functions

• family of polynomials called order-3 Bernstein polynomials

• C(3, k) t^k (1-t)^{3-k}; 0<= k <= 3 p(t) =

• all positive in interval [0,1]

• sum is equal to 1

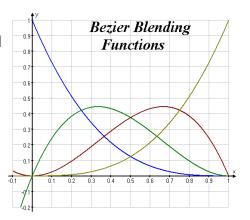
$$= \begin{bmatrix} (1-t)^3 \\ 3t(1-t)^2 \\ 3t^2(1-t) \\ t^3 \end{bmatrix}^{1} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

10

12

Bézier Blending Functions

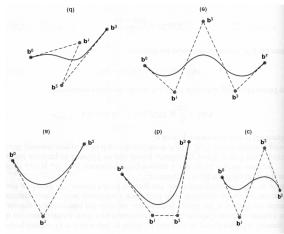
- every point on curve is linear combination of control points
- weights of combination are all positive
- · sum of weights is 1
- therefore, curve is a convex combination of the control points



13

Bézier Curves

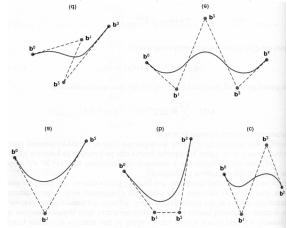
 curve will always remain within convex hull (bounding region) defined by control points



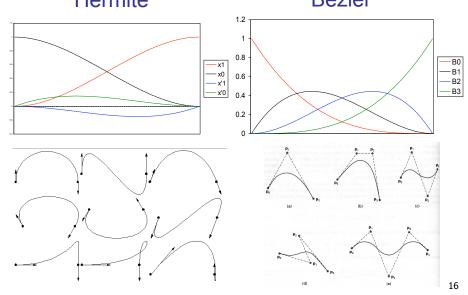
- 1

Bézier Curves

- interpolate between first, last control points
- 1st point's tangent along line joining 1st, 2nd pts
- 4th point's tangent along line joining 3rd, 4th pts



Comparing Hermite and Bézier Hermite Bézier



Rendering Bezier Curves: Simple

- evaluate curve at fixed set of parameter values, join points with straight lines
- advantage: very simple
- disadvantages:
 - expensive to evaluate the curve at many points
 - no easy way of knowing how fine to sample points, and maybe sampling rate must be different along curve
 - no easy way to adapt: hard to measure deviation of line segment from exact curve

Rendering Beziers: Subdivision

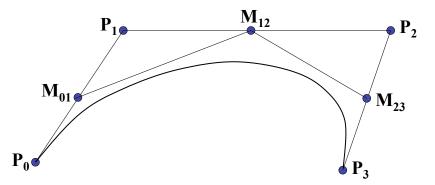
- a cubic Bezier curve can be broken into two shorter cubic Bezier curves that exactly cover original curve
- suggests a rendering algorithm:
 - keep breaking curve into sub-curves
 - stop when control points of each sub-curve are nearly collinear
 - draw the control polygon: polygon formed by control points

17

1

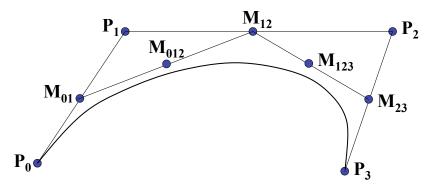
Sub-Dividing Bezier Curves

• step 1: find the midpoints of the lines joining the original control vertices. call them M_{01} , M_{12} , M_{23}



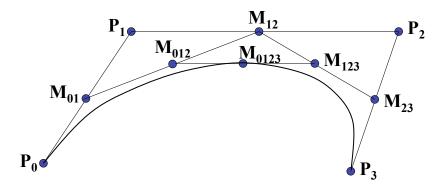
Sub-Dividing Bezier Curves

• step 2: find the midpoints of the lines joining M_{01} , M_{12} and M_{12} , M_{23} . call them M_{012} , M_{123}



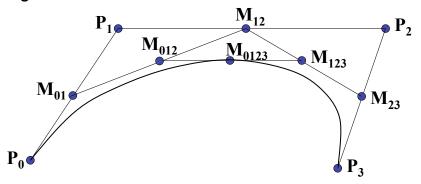
Sub-Dividing Bezier Curves

• step 3: find the midpoint of the line joining M_{012} , M_{123} . call it M_{0123}



Sub-Dividing Bezier Curves

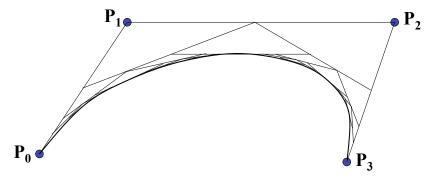
- curve P_0 , M_{01} , M_{012} , M_{0123} exactly follows original from t=0 to t=0.5
- curve M_{0123} , M_{123} , M_{23} , P_3 exactly follows original from t=0.5 to t=1



22

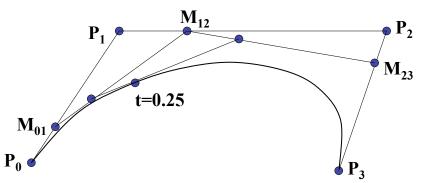
Sub-Dividing Bezier Curves

· continue process to create smooth curve



de Casteljau's Algorithm

- can find the point on a Bezier curve for any parameter value *t* with similar algorithm
 - for t=0.25, instead of taking midpoints take points 0.25 of the way



demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm

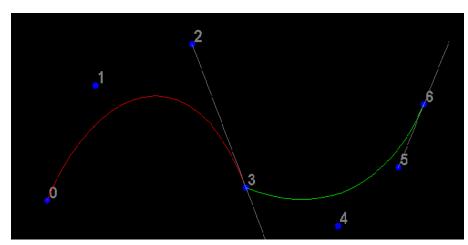
23

Longer Curves

- · a single cubic Bezier or Hermite curve can only capture a small class of curves
 - at most 2 inflection points
- one solution is to raise the degree
 - allows more control, at the expense of more control points and higher degree polynomials
 - · control is not local, one control point influences entire curve
- better solution is to join pieces of cubic curve together into piecewise cubic curves
 - total curve can be broken into pieces, each of which is cubic
 - local control: each control point only influences a limited part of the curve
 - · interaction and design is much easier

25

Piecewise Bezier: Continuity Problems

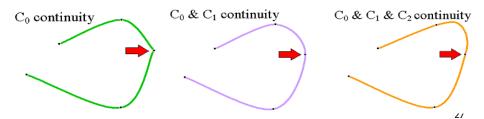


demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

26

Continuity

- when two curves joined, typically want some degree of continuity across knot boundary
 - C0, "C-zero", point-wise continuous, curves share same point where they join
 - C1, "C-one", continuous derivatives
 - C2, "C-two", continuous second derivatives



Geometric Continuity

- derivative continuity is important for animation
 - if object moves along curve with constant parametric speed, should be no sudden jump at knots
- for other applications, tangent continuity suffices
 - requires that the tangents point in the same direction
 - referred to as G¹ geometric continuity
 - curves could be made C¹ with a re-parameterization
 - geometric version of C² is G², based on curves having the same radius of curvature across the knot

Achieving Continuity

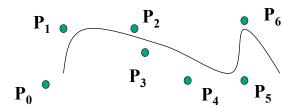
- Hermite curves
 - user specifies derivatives, so C¹ by sharing points and derivatives across knot
- Bezier curves
 - they interpolate endpoints, so C^0 by sharing control pts
 - introduce additional constraints to get C¹
 - parametric derivative is a constant multiple of vector joining first/ last 2 control points
 - so C^1 achieved by setting $P_{0,3}=P_{1,0}=J$, and making $P_{0,2}$ and J and $P_{1,1}$ collinear, with $J-P_{0,2}=P_{1,1}-J$
 - C² comes from further constraints on P_{0.1} and P_{1.2}
 - leads to...

29

31

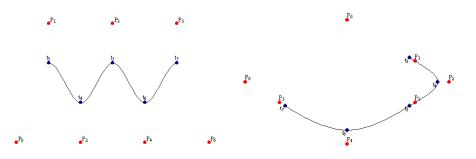
B-Spline Curve

- start with a sequence of control points
- select four from middle of sequence $(p_{i-2}, p_{i-1}, p_i, p_{i+1})$
- Bezier and Hermite goes between p_{i-2} and p_{i+1}
- B-Spline doesn't interpolate (touch) any of them but approximates the going through p_{i-1} and p_i



B-Spline

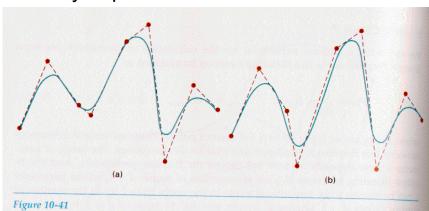
- by far the most popular spline used
- C₀, C₁, and C₂ continuous



demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html

B-Spline

locality of points



Local modification of a B-spline curve. Changing one of the control points in (a) produces curve (b), which is modified only in the neighborhood of the altered control point.