Reading for Color

- RB Chap Color
- FCG Sections 3.2-3.3
- FCG Chap 20 Color
- FCG Chap 21.2.2 Visual Perception (Color)
Vision/Color
RGB Color

- triple \((r, g, b)\) represents colors with amount of red, green, and blue
 - hardware-centric
 - used by OpenGL
Alpha

• fourth component for transparency
 • (r,g,b,\(\alpha\))
• fraction we can see through
 • \(c = \alpha c_f + (1-\alpha)c_b\)
• more on compositing later
Additive vs. Subtractive Colors

- **Additive**: Light
 - Monitors, LCDs
 - RGB model

- **Subtractive**: Pigment
 - Printers
 - CMY model
 - Dyes absorb light

\[
\begin{bmatrix}
C \\
M \\
Y
\end{bmatrix} =
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} -
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]
Component Color

- component-wise multiplication of colors
 - \((a_0, a_1, a_2) \times (b_0, b_1, b_2) = (a_0 b_0, a_1 b_1, a_2 b_2)\)

- why does this work?
 - must dive into light, human vision, color spaces
Basics Of Color

• elements of color:
Basics of Color

• physics
 • illumination
 • electromagnetic spectra
 • reflection
 • material properties
 • surface geometry and microgeometry
 • polished versus matte versus brushed

• perception
 • physiology and neurophysiology
 • perceptual psychology
Light Sources

• common light sources differ in kind of spectrum they emit:
 • continuous spectrum
 • energy is emitted at all wavelengths
 • blackbody radiation
 • tungsten light bulbs
 • certain fluorescent lights
 • sunlight
 • electrical arcs
 • line spectrum
 • energy is emitted at certain discrete frequencies
Blackbody Radiation

- black body
 - dark material, so that reflection can be neglected
 - spectrum of emitted light changes with temperature
 - this is the origin of the term “color temperature”
 - e.g. when setting a white point for your monitor
 - cold: mostly infrared
 - hot: reddish
 - very hot: bluish
- demo:

http://www.mhhe.com/physsci/astronomy/applets/Blackbody/frame.html
Electromagnetic Spectrum

Frequency (Hz)
Wavelength (nm)

AM radio, microwave, ultraviolet, gamma rays
FM radio, TV, infrared, x-rays
Electromagnetic Spectrum
White Light

- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"
Sunlight Spectrum

• spectral distribution: power vs. wavelength
Continuous Spectrum

- sunlight
- various “daylight” lamps
Line Spectrum

• ionized gases
• lasers
• some fluorescent lamps
White Light and Color

• when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
• combination of frequencies present in the reflected light that determines what we perceive as the color of the object
Hue

• hue (or simply, "color") is dominant wavelength/frequency

• integration of energy for all visible wavelengths is proportional to intensity of color
Saturation or Purity of Light

- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue
Intensity vs. Brightness

• intensity : physical term
 • measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)

• lightness/brightness: perceived intensity of light
 • nonlinear
Perceptual vs. Colorimetric Terms

- **Perceptual**
 - Hue
 - Saturation
 - Lightness
 - reflecting objects
 - Brightness
 - light sources

- **Colorimetric**
 - Dominant wavelength
 - Excitation purity
 - Luminance
Physiology of Vision

- the retina
 - rods
 - b/w, edges
 - cones
 - 3 types
 - color sensors
 - uneven distribution
 - dense fovea
Physiology of Vision

- Center of retina is densely packed region called the **fovea**.
- Cones much denser here than the **periphery**
Foveal Vision

• hold out your thumb at arm’s length
Tristimulus Theory of Color Vision

• Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries

• Colors that look the same but have different spectra are called metamers
Trichromacy

• three types of cones
 • L or R, most sensitive to red light (610 nm)
 • M or G, most sensitive to green light (560 nm)
 • S or B, most sensitive to blue light (430 nm)

• color blindness results from missing cone type(s)
Metamers

- A given perceptual sensation of color derives from the stimulus of all three cone types.

- Identical perceptions of color can thus be caused by very different spectra.

- Demo

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html
Color Spaces

- three types of cones suggests color is a 3D quantity. How to define 3D color space?

- idea: perceptually based measurement
 - shine given wavelength (\(\lambda \)) on a screen
 - user must control three pure lights producing three other wavelengths
 - used R=700nm, G=546nm, and B=436nm
 - adjust intensity of RGB until colors are identical
 - this works because of metamers!
 - experiments performed in 1930s
Negative Lobes

- sometimes need to point red light to shine on target in order to match colors
 - equivalent mathematically to "removing red"
 - but physically impossible to remove red from CRT phosphors
- can’t generate all other wavelengths with any set of three positive monochromatic lights!
- solution: convert to new synthetic coordinate system to make the job easy
CIE Color Space

- CIE defined 3 “imaginary” lights X, Y, Z
 - any wavelength λ can be matched perceptually by positive combinations

Note that:
- X \sim R
- Y \sim G
- Z \sim B
Measured vs. CIE Color Spaces

- measured basis
 - monochromatic lights
 - physical observations
 - negative lobes

- transformed basis
 - “imaginary” lights
 - all positive, unit area
 - Y is luminance, no hue
 - X,Z no luminance
CIE and Chromaticity Diagram

• X, Y, Z form 3D shape
• project X, Y, Z on X+Y+Z=1 plane for 2D color space
 • chromaticity diagram
 • separate color from brightness
 • \(x = \frac{X}{X+Y+Z} \)
 • \(y = \frac{Y}{X+Y+Z} \)
CIE “Horseshoe” Diagram Facts

• all visible colors lie inside the horseshoe
 • result from color matching experiments
• spectral (monochromatic) colors lie around the border
 • straight line between blue and red contains purple tones
• colors combine linearly (i.e. along lines), since the xy-plane is a plane from a linear space
CIE “Horseshoe” Diagram Facts

• can choose a point C for a white point
 • corresponds to an illuminant
 • usually on curve swept out by black body radiation spectra for different temperatures
Blackbody Curve

- illumination:
 - candle 2000K
 - A: Light bulb 3000K
 - sunset/sunrise 3200K
 - D: daylight 6500K
 - overcast day 7000K
 - lightning >20,000K
CIE “Horseshoe” Diagram Facts

• can choose a point C for a white point
 • corresponds to an illuminant
 • usually on curve swept out by black body radiation spectra for different temperatures
• two colors are complementary relative to C when are
 • located on opposite sides of line segment through C
 • so C is an affine combination of the two colors
• find dominant wavelength of a color:
 • extend line from C through color to edge of diagram
 • some colors (i.e. purples) do not have a dominant wavelength, but their complementary color does
Color Interpolation, Dominant & Opponent Wavelength
Device Color Gamuts

- gamut is polygon, device primaries at corners
 - defines reproducible color range
 - X, Y, and Z are hypothetical light sources, no device can produce entire gamut
Display Gamuts

Projector Gamuts

Gamut Mapping

• how to handle colors outside gamut?
 • one way: construct ray to white point, find closest displayable point within gamut
RGB Color Space (Color Cube)

- define colors with \((r, g, b)\) amounts of red, green, and blue
 - used by OpenGL
 - hardware-centric

- RGB color cube sits within CIE color space
 - subset of perceivable colors
 - scale, rotate, shear cube
HSV Color Space

- more intuitive color space for people
 - H = Hue
 - dominant wavelength, “color”
 - S = Saturation
 - how far from grey/white
 - V = Value
 - how far from black/white
 - also: brightness B, intensity I, lightness L
HSI/HSV and RGB

- HSV/HSI conversion from RGB not expressible in matrix
 - H=hue same in both
 - V=value is max, I=intensity is average

\[H = \cos^{-1} \left[\frac{1}{2} \left(\frac{(R - G) + (R - B)}{\sqrt{(R - G)^2 + (R - B)(G - B)}} \right) \right] \]

\[I = \frac{R + G + B}{3} \]

\[V = \max(R, G, B) \]

HSI:
\[S = 1 - \frac{\min(R, G, B)}{I} \]

HSV:
\[S = 1 - \frac{\min(R, G, B)}{V} \]
YIQ Color Space

- color model used for color TV
 - Y is luminance (same as CIE)
 - I & Q are color (not same I as HSI!)
 - using Y backwards compatible for B/W TVs
 - conversion from RGB is linear
 - expressible with matrix multiply
 \[
 \begin{bmatrix}
 Y \\
 I \\
 Q
 \end{bmatrix} =
 \begin{bmatrix}
 0.30 & 0.59 & 0.11 \\
 0.60 & -0.28 & -0.32 \\
 0.21 & -0.52 & 0.31
 \end{bmatrix}
 \begin{bmatrix}
 R \\
 G \\
 B
 \end{bmatrix}
 \]
 - green is much lighter than red, and red lighter than blue
Luminance vs. Intensity

- luminance
 - Y of YIQ
 - $0.299R + 0.587G + 0.114B$
 - captures important factor
- intensity/brightness
 - I/V/B of HSI/HSV/HSB
 - $0.333R + 0.333G + 0.333B$
 - not perceptually based

Opponent Color

• definition
 • achromatic axis
 • R-G and Y-B axis
 • separate lightness from chroma channels

• first level encoding
 • linear combination of LMS
 • before optic nerve
 • basis for perception
 • “color blind” = color deficient
 • degraded/no acuity on one axis
 • 8%-10% men are red/green deficient
• simulates color vision deficiencies
Color/Lightness Constancy

- color perception depends on surrounding
 - colors in close proximity
 - simultaneous contrast effect

- illumination under which the scene is viewed
Color/Lightness Constancy

Image courtesy of John McCann
Color/Lightness Constancy

Image courtesy of John McCann
Color Constancy

- automatic “white balance” from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception

From Color Appearance Models, fig 8-1
Stroop Effect

- red
- blue
- orange
- purple
- green
Stroop Effect

- blue
- green
- purple
- red
- orange

- interplay between cognition and perception