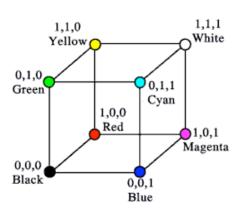


University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013

Tamara Munzner

Vision/Color

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

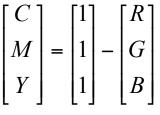

Vision/Color

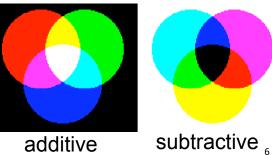
Reading for Color

- RB Chap Color
- FCG Sections 3.2-3.3
- FCG Chap 20 Color
- FCG Chap 21.2.2 Visual Perception (Color)

RGB Color

- triple (r, g, b) represents colors with amount of red, green, and blue
 - hardware-centric
 - used by OpenGL

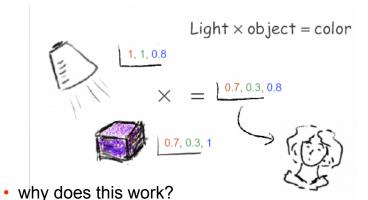

5


Alpha

- fourth component for transparency
 - (r,g,b,α)
- fraction we can see through
 - $c = \alpha c_f + (1-\alpha)c_b$
- more on compositing later

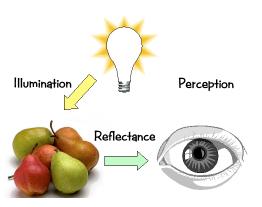
Additive vs. Subtractive Colors

- · additive: light
 - monitors, LCDs
 - RGB model
- subtractive: pigment
 - printers
 - CMY model
 - dyes absorb light



5

Component Color


- component-wise multiplication of colors
 - (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

• must dive into light, human vision, color spaces

Basics Of Color

elements of color:

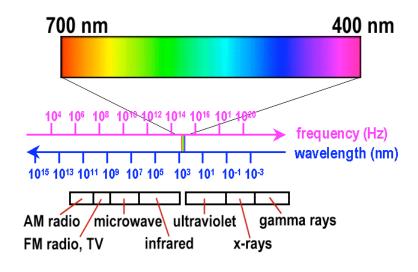
Basics of Color

- physics
 - illumination
 - electromagnetic spectra
 - reflection
 - material properties
 - surface geometry and microgeometry
 - · polished versus matte versus brushed
- perception
 - physiology and neurophysiology
 - perceptual psychology

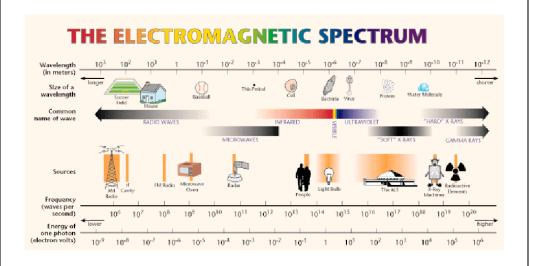
Light Sources

- common light sources differ in kind of spectrum they emit:
 - · continuous spectrum
 - · energy is emitted at all wavelengths
 - blackbody radiation
 - · tungsten light bulbs
 - · certain fluorescent lights
 - sunlight
 - · electrical arcs
 - line spectrum
 - · energy is emitted at certain discrete frequencies

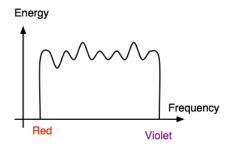
9


10

Blackbody Radiation

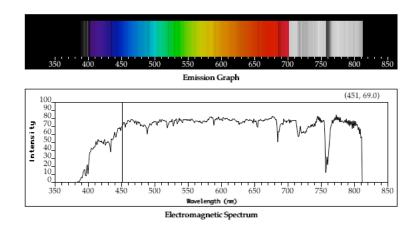

- black body
 - · dark material, so that reflection can be neglected
 - spectrum of emitted light changes with temperature
 - this is the origin of the term "color temperature"
 - e.g. when setting a white point for your monitor
 - · cold: mostly infrared
 - hot: reddish
 - very hot: bluish
 - demo:

Electromagnetic Spectrum

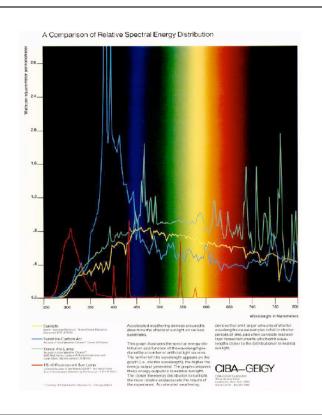


Electromagnetic Spectrum

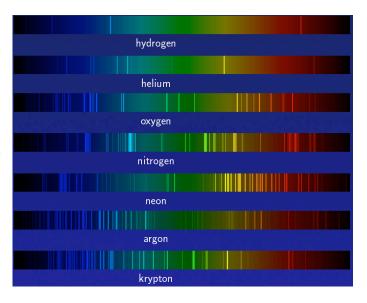
White Light


 sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

14


Sunlight Spectrum

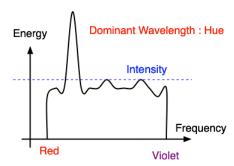
• spectral distribution: power vs. wavelength


Continuous Spectrum

- sunlight
- various "daylight" lamps

Line Spectrum

- ionized gases
- lasers
- some fluorescent lamps

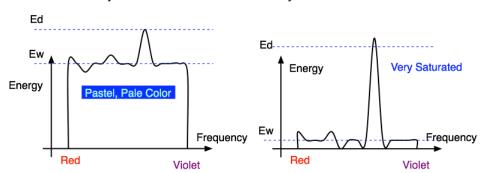

White Light and Color

- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determines what we perceive as the color of the object

18

Hue

 hue (or simply, "color") is dominant wavelength/ frequency



 integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light

- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - · saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

Intensity vs. Brightness

- intensity : physical term
 - measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)
- lightness/brightness: perceived intensity of light
 - nonlinear

Perceptual vs. Colorimetric Terms

Perceptual

Colorimetric

Hue

Dominant wavelength

Saturation

Excitation purity

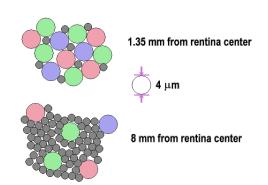
- Lightness
 - · reflecting objects
- Luminance

Brightness

21

light sources

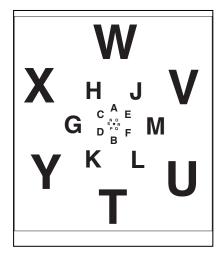
Luminance


Physiology of Vision

- the retina
 - rods
 - b/w, edges
 - cones
 - 3 types
 - color sensors
 - uneven distribution
 - dense fovea

Physiology of Vision

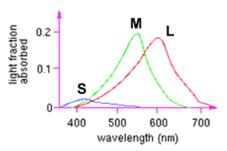
- Center of retina is densely packed region called the *fovea*
 - Cones much denser here than the periphery



Foveal Vision

hold out your thumb at arm's length

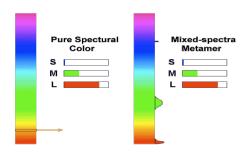
25


27

Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries
- Colors that look the same but have different spectra are called metamers

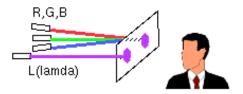
Trichromacy


- three types of cones
 - L or R, most sensitive to red light (610 nm)
 - M or G, most sensitive to green light (560 nm)
 - S or B, most sensitive to blue light (430 nm)

· color blindness results from missing cone type(s)

Metamers

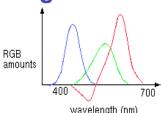
a given perceptual sensation of color derives from the stimulus of all three cone types



- identical perceptions of color can thus be caused by very different spectra
- demo

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

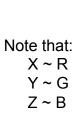
Color Spaces

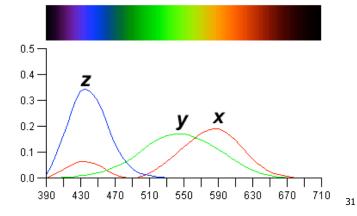

 three types of cones suggests color is a 3D quantity. how to define 3D color space?

- idea: perceptually based measurement
 - shine given wavelength (λ) on a screen
 - user must control three pure lights producing three other wavelengths
 - used R=700nm, G=546nm, and B=436nm
 - · adjust intensity of RGB until colors are identical
 - · this works because of metamers!
 - experiments performed in 1930s

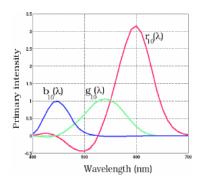
29

Negative Lobes

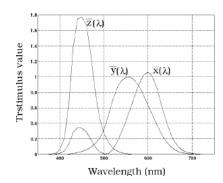



- sometimes need to point red light to shine on target in order to match colors
 - equivalent mathematically to "removing red"
 - · but physically impossible to remove red from CRT phosphors
- can't generate all other wavelenths with any set of three positive monochromatic lights!
- solution: convert to new synthetic coordinate system to make the job easy

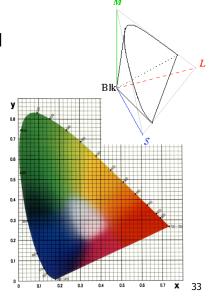
30


CIE Color Space

- CIE defined 3 "imaginary" lights X, Y, Z
 - any wavelength λ can be matched perceptually by positive combinations



Measured vs. CIE Color Spaces


- measured basis
 - monochromatic lights
 - physical observations
 - negative lobes

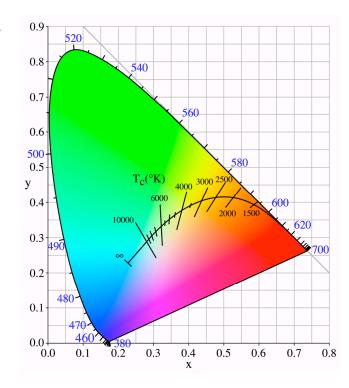
- transformed basis
 - · "imaginary" lights
 - · all positive, unit area
 - Y is luminance, no hue
 - X,Z no luminance

CIE and Chromaticity Diagram

- X, Y, Z form 3D shape
- project X, Y, Z on X+Y+Z=1 plane for 2D color space
 - · chromaticity diagram
 - separate color from brightness
 - x = X / (X+Y+Z)
 - y = Y / (X+Y+Z)

CIE "Horseshoe" Diagram Facts

- all visible colors lie inside the horseshoe
 - result from color matching experiments
- spectral (monochromatic) colors lie around the border
 - straight line between blue and red contains purple tones
- colors combine linearly (i.e. along lines), since the xy-plane is a plane from a linear space


34

CIE "Horseshoe" Diagram Facts

- · can choose a point C for a white point
 - corresponds to an illuminant
 - usually on curve swept out by black body radiation spectra for different temperatures

Blackbody Curve

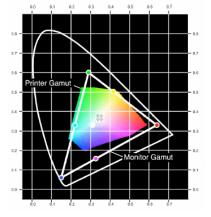
- illumination:
 - candle 2000K
 - A: Light bulb 3000K
 - sunset/ sunrise 3200K
 - D: daylight 6500K
 - overcast day 7000K
 - lightning >20,000K

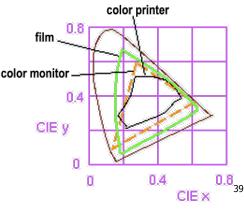


CIE "Horseshoe" Diagram Facts

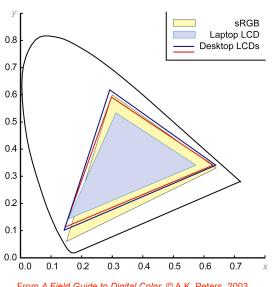
- can choose a point C for a white point
 - · corresponds to an illuminant
 - usually on curve swept out by black body radiation spectra for different temperatures
 - two colors are complementary relative to C when are
 - located on opposite sides of line segment through C
 - · so C is an affine combination of the two colors
 - find dominant wavelength of a color:
 - extend line from C through color to edge of diagram
 - some colors (i.e. purples) do not have a dominant wavelength, but their complementary color does

37

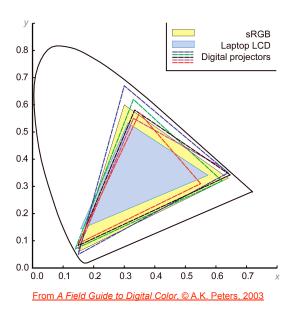

Color Interpolation, Dominant & Opponent Wavelength



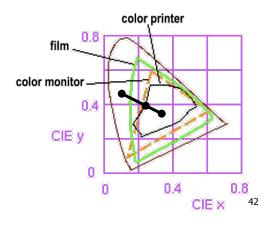
38


Device Color Gamuts

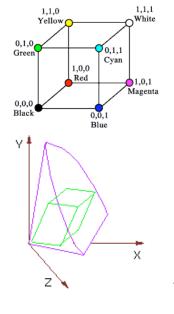
- gamut is polygon, device primaries at corners
 - · defines reproducible color range
 - X, Y, and Z are hypothetical light sources, no device can produce entire gamut



Display Gamuts

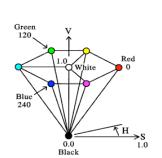

From A Field Guide to Digital Color, © A.K. Peters, 2003

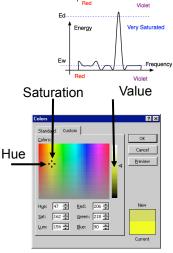
Projector Gamuts


Gamut Mapping

- how to handle colors outside gamut?
 - one way: construct ray to white point, find closest displayable point within gamut

RGB Color Space (Color Cube)


- define colors with (r, g, b) amounts of red, green, and blue
 - used by OpenGL
 - hardware-centric
- RGB color cube sits within CIE color space
 - subset of perceivable colors
 - scale, rotate, shear cube



41

HSV Color Space

- more intuitive color space for people
 - H = Hue
 - dominant wavelength, "color"
 - S = Saturation
 - · how far from grey/white
 - V = Value
 - · how far from black/white
 - · also: brightness B, intensity I, lightness L

,

HSI/HSV and RGB

- HSV/HSI conversion from RGB not expressible in matrix
 - H=hue same in both
 - V=value is max, I=intensity is average

$$H = \cos^{-1} \left[\frac{\frac{1}{2} [(R - G) + (R - B)]}{\sqrt{(R - G)^2 + (R - B)(G - B)}} \right] \text{ if } (B > G),$$

$$H = 360 - H$$

HSI:
$$S = 1 - \frac{\min(R, G, B)}{I}$$
 $I = \frac{R + G + B}{3}$

HSV: $S = 1 - \frac{\min(R, G, B)}{V}$ $V = \max(R, G, B)$

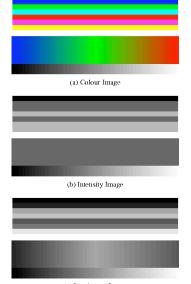
YIQ Color Space

· color model used for color TV

Y is luminance (same as CIE)

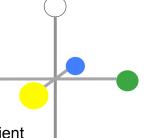
I & Q are color (not same I as HSI!)

- using Y backwards compatible for B/W TVs
- conversion from RGB is linear
 - expressible with matrix multiply

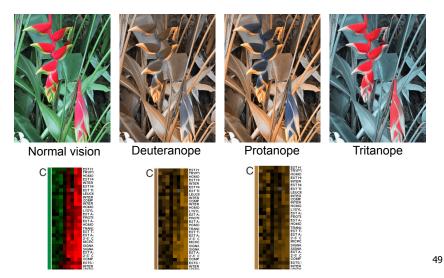

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.30 & 0.59 & 0.11 \\ 0.60 & -0.28 & -0.32 \\ 0.21 & -0.52 & 0.31 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 green is much lighter than red, and red lighter than blue

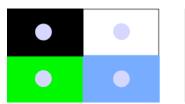
16


Luminance vs. Intensity

- luminance
 - Y of YIQ
 - 0.299R + 0.587G + 0.114B
 - captures important factor
- intensity/brightness
 - I/V/B of HSI/HSV/HSB
 - 0.333R + 0.333G + 0.333B
 - · not perceptually based


Opponent Color

- definition
 - achromatic axis
 - R-G and Y-B axis
 - separate lightness from chroma channels
- first level encoding
 - linear combination of LMS
 - before optic nerve
 - basis for perception
 - "color blind" = color deficient
 - degraded/no acuity on one axis
 - 8%-10% men are red/green deficient


vischeck.com

simulates color vision deficiencies

Color/Lightness Constancy

- color perception depends on surrounding
 - colors in close proximity
 - simultaneous contrast effect

illumination under which the scene is viewed

ΕN

Color/Lightness Constancy

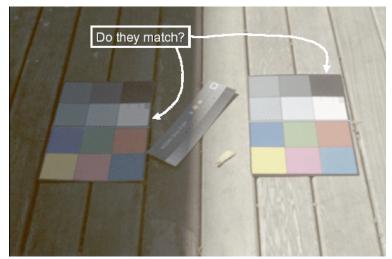


Image courtesy of John McCann

Color/Lightness Constancy

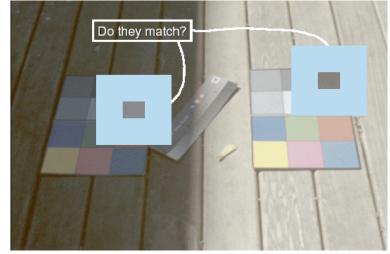



Image courtesy of John McCann

Color Constancy

- automatic "white balance" from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception

Stroop Effect

- red
- blue
- orange
- purple
- green

94

Stroop Effect

- blue
- green
- purple
- red
- orange
- interplay between cognition and perception