

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013

Tamara Munzner

Collision/Acceleration

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Reading for This Module

• FCG Sect 12.3 Spatial Data Structures

Collision/Acceleration

Collision Detection

- do objects collide/intersect?
 - static, dynamic
- picking is simple special case of general collision detection problem
 - check if ray cast from cursor position collides with any object in scene
 - simple shooting
 - projectile arrives instantly, zero travel time
- better: projectile and target move over time
 - see if collides with object during trajectory

Collision Detection Applications

- determining if player hit wall/floor/obstacle
 - terrain following (floor), maze games (walls)
 - stop them walking through it
- determining if projectile has hit target
- determining if player has hit target
 - punch/kick (desired), car crash (not desired)
- detecting points at which behavior should change
 - car in the air returning to the ground
- cleaning up animation
 - making sure a motion-captured character's feet do not pass through the floor
- simulating motion
 - physics, or cloth, or something else

From Simple to Complex

- boundary check
 - perimeter of world vs. viewpoint or objects
 - 2D/3D absolute coordinates for bounds
 - simple point in space for viewpoint/objects
- set of fixed barriers
 - walls in maze game
 - 2D/3D absolute coordinate system
- set of moveable objects
 - one object against set of items
 - missile vs. several tanks
 - multiple objects against each other
 - punching game: arms and legs of players
 - room of bouncing balls

Naive General Collision Detection

- for each object *i* containing polygons *p*
 - test for intersection with object *j* containing polygons *q*
- for polyhedral objects, test if object *i* penetrates surface of *j*
 - test if vertices of *i* straddle polygon *q* of *j*
 - if straddle, then test intersection of polygon *q* with polygon *p* of object *i*
- very expensive! O(n²)

Fundamental Design Principles

- *fast simple tests first*, eliminate many potential collisions
 - test bounding volumes before testing individual triangles
- exploit *locality*, eliminate many potential collisions
 - use cell structures to avoid considering distant objects
- use as much *information* as possible about geometry
 - spheres have special properties that speed collision testing
- exploit *coherence* between successive tests
 - things don't typically change much between two frames

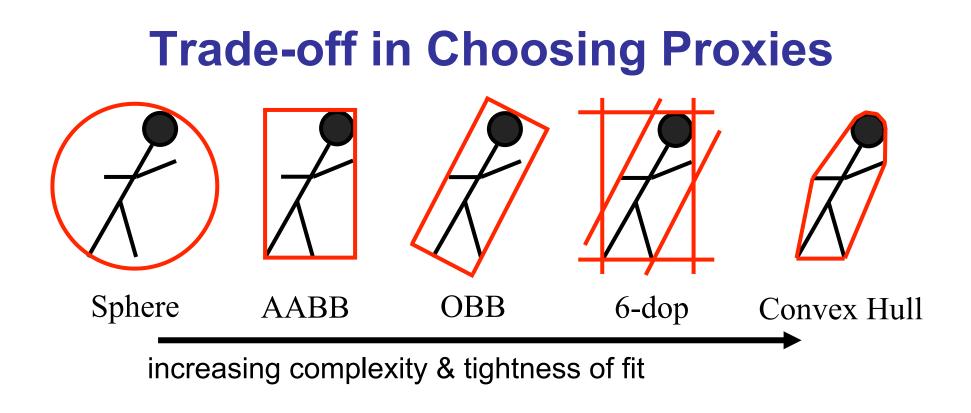
Example: Player-Wall Collisions

- first person games must prevent the player from walking through walls and other obstacles
- most general case: player and walls are polygonal meshes
- each frame, player moves along path not known in advance
 - assume piecewise linear: straight steps on each frame
 - assume player's motion could be fast

Stupid Algorithm

- on each step, do a general mesh-to-mesh intersection test to find out if the player intersects the wall
- if they do, refuse to allow the player to move
- problems with this approach? how can we improve:
 - in response?
 - in speed?

Collision Response


- frustrating to just stop
 - for player motions, often best thing to do is move player tangentially to obstacle
- do recursively to ensure all collisions caught
 - find time and place of collision
 - adjust velocity of player
 - repeat with new velocity, start time, start position (reduced time interval)
- handling multiple contacts at same time
 - find a direction that is tangential to all contacts

Accelerating Collision Detection

- two kinds of approaches (many others also)
 - collision proxies / bounding volumes
 - spatial data structures to localize
- used for both 2D and 3D
- used to accelerate many things, not just collision detection
 - raytracing
 - culling geometry before using standard rendering pipeline

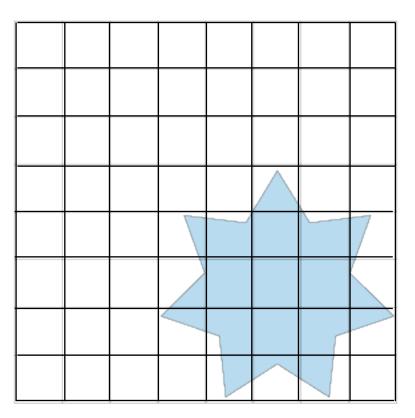
Collision Proxies

- proxy: something that takes place of real object
 - cheaper than general mesh-mesh intersections
- collision proxy (bounding volume) is piece of geometry used to represent complex object for purposes of finding collision
 - if proxy collides, object is said to collide
 - collision points mapped back onto original object
- good proxy: cheap to compute collisions for, tight fit to the real geometry
- common proxies: sphere, cylinder, box, ellipsoid
 - consider: fat player, thin player, rocket, car ...

decreasing cost of (overlap tests + proxy update)

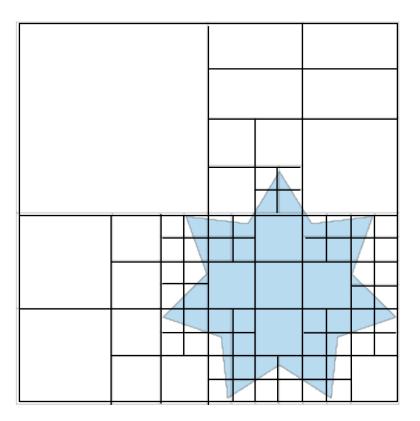
- AABB: axis aligned bounding box
- OBB: oriented bounding box, arbitrary alignment
- k-dops shapes bounded by planes at fixed orientations
 - discrete orientation polytope

Pair Reduction

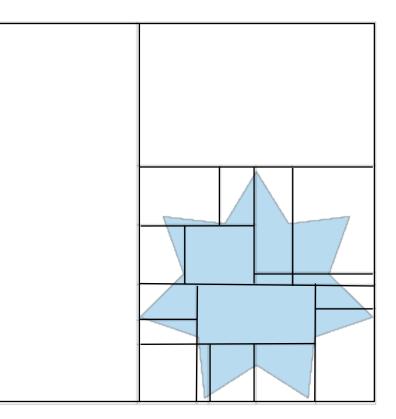

- want proxy for any moving object requiring collision detection
- before pair of objects tested in any detail, quickly test if proxies intersect
- when lots of moving objects, even this quick bounding sphere test can take too long: N² times if there are N objects
- reducing this N² problem is called *pair reduction*
- pair testing isn't a big issue until N>50 or so...

Spatial Data Structures

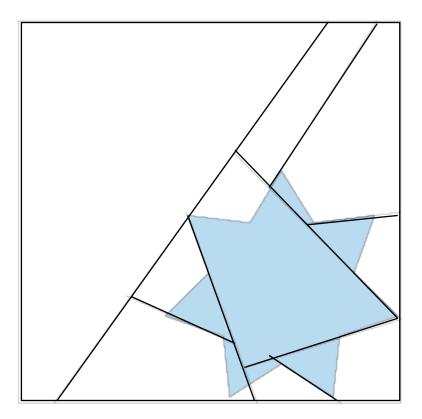
- can only hit something that is close
- spatial data structures tell you what is close to object
 - uniform grid, octrees, kd-trees, BSP trees
 - bounding volume hierarchies
 - OBB trees
 - for player-wall problem, typically use same spatial data structure as for rendering
 - BSP trees most common


Uniform Grids

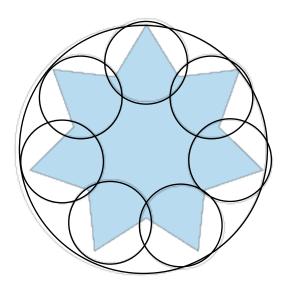
- axis-aligned
- divide space uniformly


Quadtrees/Octrees

- axis-aligned
- subdivide until no points in cell


KD Trees

- axis-aligned
- subdivide in alternating dimensions



BSP Trees

planes at arbitrary orientation

Bounding Volume Hierarchies

OBB Trees

Related Reading

- Real-Time Rendering
 - Tomas Moller and Eric Haines
 - on reserve in CICSR reading room

Acknowledgement

- slides borrow heavily from
 - Stephen Chenney, (UWisc CS679)
 - <u>http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt</u>
- slides borrow lightly from
 - Steve Rotenberg, (UCSD CSE169)
 - http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt