
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2013

Advanced Rendering

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2013

Tamara Munzner

2

Advanced Rendering

3

Reading for This Module

•  FCG Sec 8.2.7 Shading Frequency
•  FCG Chap 4 Ray Tracing
•  FCG Sec 13.1 Transparency and Refraction

•  Optional: FCG Chap 24 Global Illumination

4

Global Illumination Models
•  simple lighting/shading methods simulate

local illumination models
•  no object-object interaction

•  global illumination models
•  more realism, more computation
•  leaving the pipeline for these two lectures!

•  approaches
•  ray tracing
•  radiosity
•  photon mapping
•  subsurface scattering

5

Ray Tracing

•  simple basic algorithm
•  well-suited for software rendering
•  flexible, easy to incorporate new effects

• Turner Whitted, 1990

6

Simple Ray Tracing

•  view dependent method
•  cast a ray from viewer’s

eye through each pixel
•  compute intersection of

ray with first object in
scene

•  cast ray from
intersection point on
object to light sources

projection
reference
point

pixel positions
on projection
plane

7

Reflection
•  mirror effects

•  perfect specular reflection

n

θ θ

8

Refraction
•  happens at interface

between transparent object
and surrounding medium
•  e.g. glass/air boundary

•  Snell’s Law
• 
•  light ray bends based on

refractive indices c1, c2

2211 sinsin θθ cc =

n

θ 1

θ 2

d

t

9

Recursive Ray Tracing
•  ray tracing can handle

•  reflection (chrome/mirror)
•  refraction (glass)
•  shadows

•  spawn secondary rays
•  reflection, refraction

•  if another object is hit,
recurse to find its color

•  shadow
•  cast ray from intersection

point to light source, check
if intersects another object

projection
reference
point

pixel positions
on projection
plane

10

Basic Algorithm

for every pixel pi {
generate ray r from camera position through pixel pi
for every object o in scene {

if (r intersects o)
 compute lighting at intersection point, using local

normal and material properties; store result in pi
else
 pi= background color

}
}

11

Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
 if (Reflect(obj)) then
 reflect_color := RayTrace(ReflectRay(r,obj));
 else
 reflect_color := Black;
 if (Transparent(obj)) then
 refract_color := RayTrace(RefractRay(r,obj));
 else
 refract_color := Black;
 return Shade(reflect_color,refract_color,obj);
end;

12

Algorithm Termination Criteria

•  termination criteria
•  no intersection
•  reach maximal depth

• number of bounces
•  contribution of secondary ray attenuated

below threshold
• each reflection/refraction attenuates ray

13

Ray Tracing Algorithm

Image Plane
Light
Source Eye

Refracted
Ray

Reflected
Ray

Shadow
Rays

14

Ray-Tracing Terminology

•  terminology:
•  primary ray: ray starting at camera
•  shadow ray
•  reflected/refracted ray
•  ray tree: all rays directly or indirectly spawned

off by a single primary ray
•  note:

•  need to limit maximum depth of ray tree to
ensure termination of ray-tracing process!

15

Ray Trees

www.cs.virginia.edu/~gfx/Courses/2003/Intro.fall.03/slides/lighting_web/lighting.pdf

•  all rays directly or indirectly spawned off by a single
primary ray

16

Ray Tracing

•  issues:
•  generation of rays
•  intersection of rays with geometric primitives
•  geometric transformations
•  lighting and shading
•  efficient data structures so we don’t have to

test intersection with every object

17

Ray Generation

•  camera coordinate system
•  origin: C (camera position)
•  viewing direction: v
•  up vector: u
•  x direction: x= v × u

•  note:
•  corresponds to viewing

transformation in rendering pipeline
•  like gluLookAt

u

v
x C

18

Ray Generation
•  other parameters:

•  distance of camera from image plane: d
•  image resolution (in pixels): w, h
•  left, right, top, bottom boundaries

in image plane: l, r, t, b
•  then:

•  lower left corner of image:
•  pixel at position i, j (i=0..w-1, j=0..h-1):

uxv ⋅+⋅+⋅+= bldCO

yx

ux

⋅Δ⋅−⋅Δ⋅+=

⋅
−

−
⋅−⋅

−

−
⋅+=

yjxiO
h
btj

w
lriOP ji 11,

u

v
x C

19

Ray Generation

•  ray in 3D space:

where t= 0…∞

jijiji tCCPtCt ,,,)()(R v⋅+=−⋅+=

20

Ray Tracing

•  issues:
•  generation of rays
•  intersection of rays with geometric primitives
•  geometric transformations
•  lighting and shading
•  efficient data structures so we don’t have to

test intersection with every object

21

•  inner loop of ray-tracing
•  must be extremely efficient

•  task: given an object o, find ray parameter t, such that Ri,j(t)
is a point on the object

•  such a value for t may not exist

•  solve a set of equations
•  intersection test depends on geometric primitive

•  ray-sphere
•  ray-triangle
•  ray-polygon

Ray - Object Intersections

22

Ray Intersections: Spheres

•  spheres at origin
•  implicit function

•  ray equation

2222:),,(rzyxzyxS =++

!
!
!

"

#

$
$
$

%

&

⋅+

⋅+

⋅+

=
!
!
!

"

#

$
$
$

%

&

⋅+
!
!
!

"

#

$
$
$

%

&

=⋅+=

zz

yy

xx

z

y

x

z

y

x

jiji

vtc
vtc
vtc

v
v
v

t
c
c
c

tCt ,,)(R v

23

Ray Intersections: Spheres

•  to determine intersection:
•  insert ray Ri,j(t) into S(x,y,z):

•  solve for t (find roots)
•  simple quadratic equation

2222)()()(rvtcvtcvtc zzyyxx =⋅++⋅++⋅+

24

Ray Intersections: Other Primitives
•  implicit functions

•  spheres at arbitrary positions
•  same thing

•  conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)

•  same thing (all are quadratic functions!)
•  polygons

•  first intersect ray with plane
•  linear implicit function

•  then test whether point is inside or outside of polygon (2D test)
•  for convex polygons

•  suffices to test whether point in on the correct side of every
boundary edge

•  similar to computation of outcodes in line clipping (upcoming)

25

Ray-Triangle Intersection
•  method in book is elegant but a bit complex
•  easier approach: triangle is just a polygon

•  intersect ray with plane

•  check if ray inside triangle

€

normal : n = (b− a) × (c − a)
ray : x = e +td

plane : (p− x) ⋅n = 0⇒ x =
p ⋅n
n

p ⋅n
n

= e +td⇒ t = −
(e −p) ⋅n
d ⋅n

p is a or b or c

a

b

c

e

d

x

n

26

Ray-Triangle Intersection
•  check if ray inside triangle

•  check if point counterclockwise from each edge (to
its left)

•  check if cross product points in same direction as
normal (i.e. if dot is positive)

•  more details at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf €

(b− a) × (x − a) ⋅n ≥ 0
(c −b) × (x −b) ⋅n ≥ 0
(a − c) × (x − c) ⋅n ≥ 0

a

b

c

x

n

CCW

27

Ray Tracing

•  issues:
•  generation of rays
•  intersection of rays with geometric primitives
•  geometric transformations
•  lighting and shading
•  efficient data structures so we don’t have to

test intersection with every object

28

Geometric Transformations
•  similar goal as in rendering pipeline:

•  modeling scenes more convenient using different
coordinate systems for individual objects

•  problem
•  not all object representations are easy to transform

•  problem is fixed in rendering pipeline by restriction to
polygons, which are affine invariant

•  ray tracing has different solution
•  ray itself is always affine invariant
•  thus: transform ray into object coordinates!

29

Geometric Transformations
•  ray transformation

•  for intersection test, it is only important that ray is in
same coordinate system as object representation

•  transform all rays into object coordinates
•  transform camera point and ray direction by inverse of

model/view matrix
•  shading has to be done in world coordinates (where

light sources are given)
•  transform object space intersection point to world

coordinates
•  thus have to keep both world and object-space ray

30

Ray Tracing

•  issues:
•  generation of rays
•  intersection of rays with geometric primitives
•  geometric transformations
•  lighting and shading
•  efficient data structures so we don’t have to

test intersection with every object

31

Local Lighting

•  local surface information (normal…)
•  for implicit surfaces F(x,y,z)=0: normal n(x,y,z)

can be easily computed at every intersection
point using the gradient

•  example:

!
!
!

"

#

$
$
$

%

&

∂∂

∂∂

∂∂

=

zzyxF
yzyxF
xzyxF

zyx
/),,(
/),,(
/),,(

),,(n

2222),,(rzyxzyxF −++=

!
!
!

"

#

$
$
$

%

&

=

z
y
x

zyx
2
2
2

),,(n needs to be normalized!

32

Local Lighting
•  local surface information

•  alternatively: can interpolate per-vertex
information for triangles/meshes as in
rendering pipeline
• now easy to use Phong shading!

•  as discussed for rendering pipeline
•  difference with rendering pipeline:

•  interpolation cannot be done incrementally
• have to compute barycentric coordinates for

every intersection point (e.g plane equation for
triangles)

33

Global Shadows

•  approach
•  to test whether point is in shadow, send out

shadow rays to all light sources
•  if ray hits another object, the point lies in

shadow

34

Global Reflections/Refractions
•  approach

•  send rays out in reflected and refracted direction to
gather incoming light

•  that light is multiplied by local surface color and
added to result of local shading

35

Total Internal Reflection

http://www.physicsclassroom.com/Class/refrn/U14L3b.html 36

Ray Tracing

•  issues:
•  generation of rays
•  intersection of rays with geometric primitives
•  geometric transformations
•  lighting and shading
•  efficient data structures so we don’t have to

test intersection with every object

37

Optimized Ray-Tracing
•  basic algorithm simple but very expensive
•  optimize by reducing:

•  number of rays traced
•  number of ray-object intersection calculations

•  methods
•  bounding volumes: boxes, spheres
•  spatial subdivision

•  uniform
•  BSP trees

•  (more on this later with collision)

38

Example Images

39

Radiosity
•  radiosity definition

•  rate at which energy emitted or reflected by a surface
•  radiosity methods

•  capture diffuse-diffuse bouncing of light
•  indirect effects difficult to handle with raytracing

40

Radiosity
•  illumination as radiative heat transfer

•  conserve light energy in a volume
•  model light transport as packet flow until convergence
•  solution captures diffuse-diffuse bouncing of light

•  view-independent technique
•  calculate solution for entire scene offline
•  browse from any viewpoint in realtime

heat/light source

thermometer/eye

reflective objects

energy
packets

41

Radiosity

[IBM]

•  divide surfaces into small patches
•  loop: check for light exchange between all pairs

•  form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/continuous.jpg escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/discrete.jpg
42

Better Global Illumination
•  ray-tracing: great specular, approx. diffuse

•  view dependent
•  radiosity: great diffuse, specular ignored

•  view independent, mostly-enclosed volumes
•  photon mapping: superset of raytracing and radiosity

•  view dependent, handles both diffuse and specular well
raytracing photon mapping

graphics.ucsd.edu/~henrik/images/cbox.html

43

Subsurface Scattering: Translucency

•  light enters and leaves at different locations
on the surface
•  bounces around inside

•  technical Academy Award, 2003
•  Jensen, Marschner, Hanrahan

44

Subsurface Scattering: Marble

45

Subsurface Scattering: Milk vs. Paint

46

Subsurface Scattering: Skin

47

Subsurface Scattering: Skin

48

Non-Photorealistic Rendering
•  simulate look of hand-drawn sketches or

paintings, using digital models

www.red3d.com/cwr/npr/

