Shading
Clipping

Wolfgang Heidrich

Course News

Assignment 2
- Due Monday, Feb 28

Homework 3
- Discussed in labs this week

Homework 4

Reading
- Chapters 8, 9
- Hidden surface removal, shading
The Rendering Pipeline

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping

Geometry Processing

Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer

Rasterization → Fragment Processing

Shading

Input to Scan Conversion:
- Vertices of triangles (lines, quadrilaterals…)
- Color (per vertex)
 - Specified with glColor
 - Or: computed with lighting
- World-space normal (per vertex)
 - Left over from lighting stage

Shading Task:
- Determine color of every pixel in the triangle
Shading

How can we assign pixel colors using this information?

- Easiest: flat shading
 - *Whole triangle gets one color (color of 1st vertex)*
- Better: Gouraud shading
 - *Linearly interpolate color across triangle*
- Even better:
 - *Linearly interpolate the normal vector*
 - *Compute lighting for every pixel*
 - *Note: not supported by rendering pipeline as discussed so far*

Flat Shading

- Simplest approach calculates illumination at a single point for each polygon

 ![Teapot](image)

 - Obviously inaccurate for smooth surfaces
Flat Shading Approximations

If an object really is faceted, is this accurate?

\textit{no!}

- For point sources, the direction to light varies across the facet
- For specular reflectance, direction to eye varies across the facet
Improving Flat Shading

What if evaluate Phong lighting model at each pixel of the polygon?

Better, but result still clearly faceted

For smoother-looking surfaces we introduce vertex normals at each vertex

- Usually different from facet normal
- Used only for shading
- Think of as a better approximation of the real surface that the polygons approximate

Vertex Normals

Vertex normals may be

- Provided with the model
- Computed from first principles
- Approximated by averaging the normals of the facets that share the vertex
Gouraud Shading Artifacts

often appears dull, chalky

lacks accurate specular component

- if included, will be averaged over entire polygon

Gouraud Shading Artifacts

Mach bands

- Eye enhances discontinuity in first derivative
- Very disturbing, especially for highlights
Phong Shading

Linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel

- Same input as Gouraud shading
- Pro: much smoother results
- Con: considerably more expensive

Not the same as Phong lighting

- Common confusion
- Phong lighting: empirical model to calculate illumination at a point on a surface

Phong Shading

Linearly interpolate the vertex normals

- Compute lighting equations at each pixel
- Can use specular component

\[
I_{\text{total}} = k_a I_{\text{ambient}} + \sum_{i=1}^{\text{#lights}} I_i \left(k_d (\mathbf{n} \cdot \mathbf{l}_i) + k_s (\mathbf{v} \cdot \mathbf{r}_i)^{n_{\text{shiny}}} \right)
\]

remember: normals used in diffuse and specular terms

discontinuity in normal’s rate of change harder to detect
Phong Shading Difficulties

Computationally expensive
- Per-pixel vector normalization and lighting computation!
- Floating point operations required

Lighting after perspective projection
- Messes up the angles between vectors
- Have to keep eye-space vectors around

No direct support in standard rendering pipeline
- But can be simulated with texture mapping, procedural shading hardware (see later)

Shading Artifacts: Silhouettes

Polygonal silhouettes remain

- Gouraud
- Phong
How to Interpolate?

Need to propagate vertex attributes to pixels

- Interpolate between vertices:
 - \(z \) (depth)
 - \(r,g,b \) color components
 - \(N_x, N_y, N_z \) surface normals
 - \(u,v \) texture coordinates (talk about these later)

- Three equivalent ways of viewing this (for triangles)
 1. Linear interpolation
 2. Barycentric coordinates
 3. Plane Equation

1. Linear Interpolation

Interpolate quantity along \(L \) and \(R \) edges

- (as a function of \(y \))
- Then interpolate quantity as a function of \(x \)
Linear Interpolation

Most common approach, and what OpenGL does

- Perform Phong lighting at the vertices
- Linearly interpolate the resulting colors over faces
 - Along edges
 - Along scanlines

Same as Barycentric Coordinates!

- Interior: mix of c_1, c_2, c_3
- Edge: mix of c_1, c_3

2. Barycentric Coordinates

Have seen this before

- Barycentric Coordinates: weighted combination of vertices, with weights summing to 1

 \[P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3 \]

 \[\alpha + \beta + \gamma = 1 \]

 \[0 \leq \alpha, \beta, \gamma \leq 1 \]
Barycentric Coordinates

- Convex combination of 3 points

\[x = \alpha \cdot x_1 + \beta \cdot x_2 + \gamma \cdot x_3 \]

with \(\alpha + \beta + \gamma = 1, \ 0 \leq \alpha, \beta, \gamma \leq 1 \)

- \(\alpha, \beta, \) and \(\gamma \) are called barycentric coordinates

Barycentric Coordinates

One way to compute them:

\[x = \alpha x_1 + \beta x_2 + \gamma x_3 \]

with

\[\alpha = A_1 / A \]
\[\beta = A_2 / A \]
\[\gamma = A_3 / A \]
Barycentric Coordinates

How to compute areas?

- Cross products!

 e.g.:

 \[A_3 = \frac{1}{2} \| (x_2 - x_1) \times (x - x_1) \| \]

3. Plane Equation

Observation: Quantities vary linearly across image plane

- E.g.: \(r = Ax + By + C \)

 - \(r \) = red channel of the color

 - Same for \(g, b, Nx, Ny, Nz, z \)...

 - From info at vertices we know:

 \[
 \begin{align*}
 r_1 &= Ax_1 + By_1 + C \\
 r_2 &= Ax_2 + By_2 + C \\
 r_3 &= Ax_3 + By_3 + C
 \end{align*}
 \]

 - Solve for \(A, B, C \)

 - One-time set-up cost per triangle and interpolated quantity
Discussion

Which algorithm to use when?
- Scanline interpolation
 - Together with trapezoid scan conversion
- Plane equations
 - Together with edge equation scan conversion
- Barycentric coordinates
 - Not useful in the current context
 - But: method of choice for ray-tracing
 ▪ Whenever you only need to compute the value for a single pixel

Clipping

Wolfgang Heidrich
Line Clipping

Purpose
- Originally: 2D
 - Determine portion of line inside an axis-aligned rectangle (screen or window)
- 3D
 - Determine portion of line inside axis-aligned parallelepiped (viewing frustum in NDC)
 - Simple extension to the 2D algorithms
Line Clipping

Outcodes (Cohen, Sutherland ’74)
- 4 flags encoding position of a point relative to top, bottom, left, and right boundary

E.g.:
- OC(p1)=0010
- OC(p2)=0000
- OC(p3)=1001

\[
\begin{array}{ccc}
1010 & 1000 & 1001 \\
\bullet & \bullet & \bullet \\
0010 & 0000 & 0001 \\
0110 & 0100 & 0101 \\
\end{array}
\]

\[x=x_{\text{min}} \quad x=x_{\text{max}} \]

\[y=y_{\text{min}} \quad y=y_{\text{max}} \]

Wolfgang Heinrich

Line Clipping

Line segment:
\ -(p1,p2)

Trivial cases:
- OC(p1)== 0 && OC(p2)==0
 - Both points inside window, thus line segment completely visible (trivial accept)
- (OC(p1) & OC(p2))!= 0 (i.e. bitwise “and”!)
 - There is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - Thus line segment completely outside window (trivial reject)

Wolfgang Heinrich
Line Clipping

\[y = y_{\text{max}} \]
\[x = x_{\text{min}} \]
\[x = x_{\text{max}} \]

Line Clipping

\(\alpha \)-Clipping
- Handling of all the non-trivial cases
- Improvement of earlier algorithms (Cohen/Sutherland, Cyrus/Beck, Liang/Barsky)
- Define *window-edge-coordinates* of a point \(p = (x, y)^T \)
 - \(WEC_L(p) = x - x_{\text{min}} \)
 - \(WEC_R(p) = x_{\text{max}} - x \)
 - \(WEC_B(p) = y - y_{\text{min}} \)
 - \(WEC_T(p) = y_{\text{max}} - y \)

Negative if outside!
Line Clipping

α-Clipping
- Line segment defined as: \(p_1 + \alpha(p_2 - p_1) \)
- Intersection point with one of the borders (say, left):

\[
x_1 + \alpha(x_2 - x_1) = x_{\min} \iff \\
\alpha = \frac{x_{\min} - x_1}{x_2 - x_1} = \frac{x_{\min} - x_1}{(x_2 - x_{\min}) - (x_1 - x_{\min})} = \frac{WEC_L(x_1)}{WEC_L(x_1) - WEC_L(x_2)}
\]

Line Clipping

α-Clipping: algorithm

```cpp
alphaClip( p1, p2, window ) {
    Determine window-edge-coordinates of p1, p2
    Determine outcodes OC(p1), OC(p2)

    Handle trivial accept and reject

    \( \alpha_1 = 0; \) // line parameter for first point
    \( \alpha_2 = 1; \) // line parameter for second point
    ...
```
Line Clipping

\(\alpha\)-Clipping: algorithm (cont.)

\[
\begin{align*}
\text{// now clip point p1 against all edges} \\
\text{if(OC(p1) & LEFT_FLAG)} \\
\quad \alpha = \frac{\text{WEC}_L(p1)}{\text{WEC}_L(p1) - \text{WEC}_L(p2)}; \\
\quad \alpha_1 = \max(\alpha_1, \alpha); \\
\end{align*}
\]

Similarly clip p1 against other edges

...
Line Clipping

α-Clipping: algorithm (cont.)

...

// now clip point \textbf{p2} against all edges
if(OC(p2) & LEFT_FLAG) {
 \(\alpha = \text{WEC}_L(p2)/(\text{WEC}_L(p1) - \text{WEC}_L(p2)) \);
 \(\alpha_2 = \min(\alpha_2, \alpha) \);
}

Similarly clip \(p1 \) against other edges
...

Line Clipping

α-Clipping: algorithm (cont.)

...

// wrap-up
if(\(\alpha_1 > \alpha_2 \))
 no output;
else
 output line from \(p1 + \alpha_1(p2-p1) \) to \(p1 + \alpha_2(p2-p1) \)
} // end of algorithm
Line Clipping

Example

\[(1-\alpha_2)p_1+\alpha_2 p_2\]
\[(1-\alpha_1)p_1+\alpha_1 p_2\]

Start configuration After clipping p1 After clipping p2

Line Clipping

Another Example

\[(1-\alpha_2)p_1+\alpha_2 p_2\]
\[(1-\alpha_1)p_1+\alpha_1 p_2\]

Start configuration After clipping p1 After clipping p2
Line Clipping in 3D

Approach:
- Clip against parallelepiped in NDC (*after* perspective transform)
- Means that the clipping volume is always the same!
 - OpenGL: \(x_{\text{min}} = y_{\text{min}} = -1, x_{\text{max}} = y_{\text{max}} = 1 \)
- Boundary lines become boundary planes
 - *But outcodes and WECs still work the same way*
 - *Additional front and back clipping plane*
 - \(z_{\text{min}} = 0, z_{\text{max}} = 1 \) in OpenGL

Line Clipping

Extensions
- Algorithm can be extended to clipping lines against
 - *Arbitrary convex polygons (2D)*
 - *Arbitrary convex polytopes (3D)*
Line Clipping

Non-convex clipping regions
- E.g.: windows in a window system!

Line Clipping

Non-convex clipping regions
- Problem: arbitrary number of visible line segments
- Different approaches:
 - Break down polygon into convex parts
 - Scan convert for full window, and discard hidden pixels
Polygon Clipping

Objective
- 2D: clip polygon against rectangular window
 - Or general convex polygons
 - Extensions for non-convex or general polygons
- 3D: clip polygon against parallelepiped

Not just clipping all boundary lines
- May have to introduce new line segments
Polygon Clipping

Classes of Polygons
- Triangles
- Convex
- Concave
- Holes and self-intersection

Polygon Clipping

Sutherland/Hodgeman Algorithm (’74)
- Arbitrary convex or concave *object polygon*
 - *Restriction to triangles does not simplify things*
- Convex *subject polygon* (window)
Polygon Clipping

Sutherland/Hodgeman Algorithm ('74)

Approach: clip object polygon independently against all edges of subject polygon.

```
clipPolygonToEdge( p[n], edge ) {
    for( i= 0 ; i< n ; i++ ) {
        if( p[i] inside edge ) {
            if( p[i-1] inside edge ) // p[-1]= p[n-1]
                output p[i];
            else {
                p= intersect( p[i-1], p[i], edge );
                output p, p[i];
            }
        }
    }
}
```
Polygon Clipping

Clipping against one edge (cont)

p[i] inside: 2 cases

\[\begin{array}{cc|cc}
\text{inside} & \text{outside} & \text{inside} & \text{outside} \\
p[i-1] & & p & p[i-1] \\
p[i] & p & p[i] & \\
\end{array} \]

Output: p[i] Output: p, p[i]

Polygon Clipping

Clipping against one edge (cont)

\[
\text{... else} \{ \quad \text{// p[i] is outside edge} \\
\quad \text{if(p[i-1] inside edge)} \{ \\
\quad \quad p = \text{intersect(p[i-1], p[i], edge)}; \\
\quad \quad \text{output p; } \\
\quad \} \\
\}\text{// end of algorithm}
\]
Polygon Clipping

Clipping against one edge (cont)

- p[i] outside: 2 cases

<table>
<thead>
<tr>
<th>inside</th>
<th>outside</th>
<th>inside</th>
<th>outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[i-1]</td>
<td>p[i]</td>
<td>p[i]</td>
<td>p[i-1]</td>
</tr>
</tbody>
</table>

Output: p

Output: nothing

Example

![Polygon Clipping Example Diagram](image_url)
Polygon Clipping

Sutherland/Hodgeman Algorithm

- Inside/outside tests: outcodes
- Intersection of line segment with edge: window-edge coordinates
- Similar to Cohen/Sutherland algorithm for line clipping

Discussion:
- Works for concave polygons
- But generates degenerate cases
Polygon Clipping

Sutherland/Hodgeman Algorithm

Discussion:
- Clipping against individual edges independent
 ▪ Great for hardware (pipelining)
- All vertices required in memory at the same time
 ▪ Not so good, but unavoidable
 ▪ Another reason for using triangles only in hardware rendering

Polygon Clipping

Sutherland/Hodgeman Algorithm

For Rendering Pipeline:
- Re-triangulate resulting polygon
 (can be done for every individual clipping edge)
Other Polygon Clipping Algorithms

- Weiler/Aetherton ’77:
 - Arbitrary concave polygons with holes both as subject and as object polygon
- Vatti ’92:
 - Self intersection allowed as well

- … many more
 - Improved handling of degenerate cases
 - But not often used in practice due to high complexity

Coming Up:

Friday

- More clipping, hidden surface removal