Scan Conversion

Wolfgang Heidrich

Course News

Assignment 2
- Due Monday, Feb 28

Homework 3
- Discussed in labs next wee

Reading
- Chapter 3 (this week)
- Chapter 8 (next week)
The Rendering Pipeline

Course News

Assignment 2
- Due March 2

Homework 3
- Discussed in labs next week

Reading
- Chapter 3
The Rendering Pipeline

Geometry Processing

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping → Frame-buffer

Rasterization

Scan Conversion → Texturing → Depth Test → Blending

Fragment Processing

Scan Conversion - Rasterization

Convert continuous rendering primitives into discrete fragments/pixels

- Lines
 - Midpoint/Bresenham
- Triangles
 - Flood fill
 - Scanline
 - Implicit formulation
- Interpolation
Scan Conversion - Lines

Wolfgang Heidrich
Scan Conversion - Lines

First Attempt:
- Line (s,e) given in device coordinates
- Create the thinnest line that connects start point and end point without gap

Assumptions for now:
- Start point to the left of end point: xs < xe
- Slope of the line between 0 and 1 (i.e. elevation between 0 and 45 degrees):

\[
0 \leq \frac{ye - ys}{xe - xs} \leq 1
\]

Scan Conversion of Lines - Digital Differential Analyzer

First Attempt:

```c
dda( float xs, ys, xe, ye ) {
    // assume xs < xe, and slope m between 0 and 1
    float m = (ye-ys)/(xe-xs);
    float y = round( ys );
    for( int x = round( xs ) ; x<= xe ; x++ ) {
        drawPixel( x, round( y ) );
        y = y + m;
    }
}
```
Scan Conversion of Lines

DDA:

![Graph showing the DDA process for line scan conversion.]

Scan Conversion of Lines
Midpoint Algorithm

Moving horizontally along x direction
- Draw at current y value, or move up vertically to y+1?
 - Check if midpoint between two possible pixel centers above or below line

Candidates
- Top pixel: \((x+1, y+1)\)
- Bottom pixel: \((x+1, y)\)

Midpoint: \((x+1, y+.5)\)

Check if midpoint above or below line
- Below: top pixel
- Above: bottom pixel

Key idea behind Bresenham Alg.
Scan Conversion of Lines

Idea: decision variable

```cpp
dda( float xs, ys, xe, ye ) {
    float d = 0.0;
    float m = (ye - ys) / (xe - xs);
    int y = round( ys );
    for( int x = round( xs ); x <= xe; x++ ) {
        drawPixel( x, y );
        d = d + m;
        if( d >= 0.5 ) { d = d - 1.0; y++; }
    }
}
```

Scan Conversion of Lines

Bresenham Algorithm ('63)

- Use decision variable to generate purely integer algorithm
- Explicit line equation:
 \[y = \frac{(y_e - y_s)}{(x_e - x_s)} (x - x_s) + y_s \]
- Implicit version:
 \[L(x, y) = \frac{(y_e - y_s)}{(x_e - x_s)} (x - x_s) - (y - y_s) = 0 \]
- In particular for specific \(x, y \), we have
 - \(L(x, y) > 0 \) if \((x,y)\) below the line, and
 - \(L(x, y) < 0 \) if \((x,y)\) above the line
Scan Conversion of Lines

Bresenham Algorithm

- Decision variable: after drawing point \((x,y)\) decide whether to draw
 - \((x+1,y)\): case \(E\) (for “east”)
 - \((x+1,y+1)\): case \(NE\) (for “north-east”)

Check whether \((x+1,y+1/2)\) is above or below line

\[
d = L(x+1,y + \frac{1}{2})
\]

Point above line if and only if \(d<0\)

Scan Conversion of Lines

Bresenham Algorithm

- Problem: how to update \(d\)?
- Case \(E\) (point above line, \(d\leq 0\))
 - \(x = x+1;\)
 - \(d = L(x+2, y+1/2) = d+ (y_e-y_s)/(x_e-x_s)\)
- Case \(NE\) (point below line, \(d>0\))
 - \(x = x+1; y = y+1;\)
 - \(d = L(x+2, y+3/2) = d+ (y_e-y_s)/(x_e-x_s) -1\)

Initialization:
 - \(d = L(x_s+1, y_s+1/2) = (y_e-y_s)/(x_e-x_s) -1/2\)
Scan Conversion of Lines

Bresenham Algorithm

- This is still floating point
- But: only sign of d matters
- Thus: can multiply everything by $2(x_e - x_i)$

Scan Conversion of Lines

Bresenham Algorithm

```c
Bresenham( int xs, ys, xe, ye ) {
    int y= ys;
    incrE= 2(ys - ye);
    incrNE= 2((ye - ys) - (xe-xs));
    for( int x= xs ; x<= xe ; x++ ) {
        drawPixel( x, y );
        if( d<= 0 ) d+= incrE;
        else { d+= incrNE; y++; }
    }
}
```
Scan Conversion of Lines

Discussion
- Bresenham sets same pixels as DDA
- Intensity of line varies with its angle!

Scan Conversion of Lines

Discussion
- Bresenham
 - Good for hardware implementations (integer!)
- DDA
 - May be faster for software (depends on system)!
 - Floating point ops higher parallelized (pipelined)
 - E.g. RISC CPUs from MIPS, SUN
 - No if statements in inner loop
 - More efficient use of processor pipelining
Scan Conversion of Polygons

One possible scan conversion
Scan Conversion of Polygons

A General Algorithm
- Intersect each scanline with all edges
- Sort intersections in x
- Calculate parity to determine in/out
- Fill the ‘in’ pixels

Scan Conversion of Polygons
- Works for arbitrary polygons
- Efficiency improvement:
 - Exploit row-to-row coherence using “edge table”
Edge Walking

Past graphics hardware

- Exploit continuous L and R edges on trapezoid

\begin{equation}
\text{scanTrapezoid}(x_L, x_R, y_B, y_T, \Delta x_L, \Delta x_R)
\end{equation}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{trapezoid.png}
\end{figure}

Edge Walking

\begin{verbatim}
for (y=yB; y<=yT; y++) {
 for (x=xL; x<=xR; x++)
 setPixel(x, y);
 xL += DxL;
 xR += DxR;
}
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{algorithm.png}
\end{figure}
Edge Walking Triangles

Split triangles into two regions with continuous left and right edges

\[
\text{scanTrapezoid}(x_3, x_m, y_3, y_1, \frac{1}{m_{13}}, \frac{1}{m_{12}})
\]
\[
\text{scanTrapezoid}(x_2, x_2, y_2, y_3, \frac{1}{m_{23}}, \frac{1}{m_{12}})
\]

Edge Walking

Issues

- Many applications have small triangles
 - Setup cost is non-trivial
- Clipping triangles produces non-triangles
 - This can be avoided through re-triangulation, as discussed
Modern Rasterization:
Edge Equations

Define a triangle as follows:

Using Edge Equations

Usage:
- Go over each pixel in bounding rectangle
- Check if pixel is inside/outside of triangle
 - Using sign of edge equations
Implicit equation of a triangle edge:

\[L(x, y) = \frac{(y_c - y_s)}{(x_c - x_s)} (x - x_s) - (y - y_s) = 0 \]

(see Bresenham algorithm)

- \(L(x, y) \) positive on one side of edge, negative on the other

Question:

- What happens for vertical lines?

Multiply with denominator

\[L(x, y) = (y_c - y_s)(x - x_s) - (y - y_s)(x_c - x_s) = 0 \]

- Avoids singularity
- Works with vertical lines

What about the sign?

- Which side is in, which is out?
Edge Equations

Determining the sign
- Which side is “in” and which is “out” depends on order of start/end vertices...
- Convention: specify vertices in counter-clockwise order

\[L(x, y) = \left(y_e - y_s \right) \left(x - x_s \right) + \left(y - y_s \right) \left(x_e - x_s \right) = 0 \]

Counter-Clockwise Triangles
- The equation \(L(x, y) \) as specified above is negative inside, positive outside
 - Flip sign:
 \[L(x, y) = -\left(y_e - y_s \right) \left(x - x_s \right) + \left(y - y_s \right) \left(x_e - x_s \right) = 0 \]

Clockwise triangles
- Use original formula
 \[L(x, y) = \left(y_e - y_s \right) \left(x - x_s \right) - \left(y - y_s \right) \left(x_e - x_s \right) = 0 \]
Discussion of Polygon Scan Conversion Algorithms

On old hardware:
- Use first scan-conversion algorithm
 - Scan-convert edges, then fill in scanlines
 - Compute interpolated values by interpolating along edges, then scanlines
- Requires clipping of polygons against viewing volume
- Faster if you have a few, large polygons
- Possibly faster in software

Discussion of Polygon Scan Conversion Algorithms

Modern GPUs:
- Use edge equations
 - And plane equations for attribute interpolation
 - No clipping of primitives required
- Faster with many small triangles

Additional advantage:
- Can control the order in which pixels are processed
- Allows for more memory-coherent traversal orders
 - E.g. tiles or space-filling curve rather than scanlines
Triangle Rasterization Issues (Independent of Algorithm)

Exactly which pixels should be lit?
- A: Those pixels inside the triangle edge (of course)

But what about pixels exactly on the edge?
- Draw them: order of triangles matters (it shouldn’t)
- Don’t draw them: gaps possible between triangles

We need a consistent (if arbitrary) rule
- Example: draw pixels on left or top edge, but not on right or bottom edge

Triangle Rasterization Issues

Shared Edge Ordering
Triangle Rasterization Issues

Sliver

![Sliver Diagram]

Triangle Rasterization Issues

Moving Slivers

![Moving Slivers Diagram]
Triangle Rasterization Issues

These are ALIASING Problems

- Problems associated with representing continuous functions (triangles) with finite resolution (pixels)
- More on this problem when we talk about sampling…

Coming Up:

Monday
- Scan conversion / shading

Wednesday/Friday
- Clipping, hidden surface removal

Wolfgang Heinrich