Perspective Projection (cont.)
Transformations of Normal Vectors

Wolfgang Heidrich

Course News

Assignment 1
- Due next Monday

No new homework this week

Homework 2
- Exercise problems for perspective
- Discussed in labs this week

Quiz 1
- Wed, Jan 26. Duration: 40 minutes
- Topics: affine and perspective transformations
Course News (cont.)

Reading list
- Previously published chapters numbers were from an old book version...

Reading for Quiz (new book version):
- Math prereq: Chapter 2.1-2.4, 4
- Intro: Chapter 1
- Affine transformations: Ch. 6 (was: Ch. 5, old book)
- Perspective: Ch 7 (was: Ch. 6, old book)
 – Also reading for this week…

The Rendering Pipeline

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping → Frame-buffer

<table>
<thead>
<tr>
<th>Geometry Processing</th>
<th>Model/View Transform.</th>
<th>Lighting</th>
<th>Perspective Transform.</th>
<th>Clipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan Conversion</td>
<td>Texturing</td>
<td>Depth Test</td>
<td>Blending</td>
<td>Frame-buffer</td>
</tr>
</tbody>
</table>

Rasterization → Fragment Processing
Projective Rendering Pipeline

- **O2W** (Object to World): Modeling transformation.
- **W2V** (World to Viewing): Viewing transformation.
- **V2C** (Viewing to Clip): Projection transformation.
- **C2N** (Clip to NDC): Perspective divide.
- **N2D** (NDC to Device): Viewport transformation.

Coordinate Systems
- **OCS**: Object/model coordinate system.
- **WCS**: World coordinate system.
- **VCS**: Viewing/camera/eye coordinate system.
- **CCS**: Clipping coordinate system.
- **NDCS**: Normalized device coordinate system.
- **DCS**: Device/display/screen coordinate system.

Convention:
- Viewing frustum is mapped to a specific parallelepiped.
 - *Normalized Device Coordinates (NDC)*
- Only objects inside the parallelepiped get rendered.
- Which parallelepiped is used depends on the rendering system.

OpenGL:
- Left and right image boundary are mapped to \(x = -1 \) and \(x = +1 \).
- Top and bottom are mapped to \(y = -1 \) and \(y = +1 \).
- Near and far plane are mapped to -1 and 1.
Projective Transformations

OpenGL Convention

Camera coordinates

Clipping Coordinates

\[
\begin{align*}
x &= 1 \\
z &= -1
\end{align*}
\]

Perspective Derivation

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
E & 0 & A & 0 \\
0 & F & B & 0 \\
0 & 0 & C & D \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]

\[
x' = Ex + Az
\]

\[
x = \text{left} \rightarrow \frac{x'}{w'} = 1
\]

\[
x = \text{right} \rightarrow \frac{x'}{w'} = -1
\]

\[
y' = Fy + Bz
\]

\[
y = \text{top} \rightarrow \frac{y'}{w'} = 1
\]

\[
y = \text{bottom} \rightarrow \frac{y'}{w'} = -1
\]

\[
z' = Cz + D
\]

\[
z = \text{near} \rightarrow \frac{z'}{w'} = 1
\]

\[
z = \text{far} \rightarrow \frac{z'}{w'} = -1
\]

\[
y' = Fy + Bz,
\]

\[
y' = \frac{Fy + Bz}{w'}
\]

\[
1 = \frac{Fy + Bz}{-z}
\]

\[
1 = F \frac{y}{-z} + B \frac{z}{-z}
\]

\[
1 = F \frac{y}{-z} - B,
\]

\[
1 = F \frac{\text{top}}{-\text{near}} - B
\]

Wolfgang Heidrich
Perspective Derivation

similarly for other 5 planes

6 planes, 6 unknowns

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & 2n & \frac{t+b}{t-b} & 0 \\
0 & 0 & -(f+n) & -2fn \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

Wolfgang Heidrich

Perspective Example

view volume

left = -1, right = 1

bot = -1, top = 1

near = 1, far = 4

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -(f+n) & -2fn \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -5/3 & -8/3 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

Wolfgang Heidrich
Projective Transformations

Asymmetric Viewing Frusta

Frustum

right

left

x

Frustum

Projective Transformations

Alternative specification of symmetric frusta

- Field-of-view (fov) α
- Fov/2
- Field-of-view in y-direction (fovy) + aspect ratio

Frustum

Wolfgang Heidrich
Perspective Matrices in OpenGL

Perspective Matrices:
- `glFrustum(left, right, bottom, top, near, far)`
 - Specifies perspective transform (near, far are always positive)

Convenience Function:
- `gluPerspective(fovy, aspect, near, far)`
 - Another way to do perspective

Projective Transformations

Properties:
- All transformations that can be expressed as homogeneous 4x4 matrices (in 3D)
- 16 matrix entries, but multiples of the same matrix all describe the same transformation
 - 15 degrees of freedom
 - The mapping of 5 points uniquely determines the transformation
Projective Transformations

Properties
- Lines are mapped to lines and triangles to triangles
- Parallel lines do **not** remain parallel
 - *E.g. rails vanishing at infinity*
- Affine combinations are **not** preserved
 - *E.g. center of a line does not map to center of projected line (perspective foreshortening)*
 - *The center of a line segment does **not**, in general, map to the center of the transformed line segment*
 - Same for other points in triangles

Orthographic Camera Projection

- Camera’s back plane parallel to lens
- Infinite focal length
- No perspective convergence

- Just throw away z values

- OpenGL:
 - `glOrtho`
 - `gluOrtho2D`

\[
\begin{bmatrix}
 x_p \\ y_p \\ z_p \\ 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\ y \\ z \\ 1
\end{bmatrix}
\]
Projection Taxonomy

- planar projections
 - perspective: 1,2,3-point
 - parallel
 - oblique
 - orthographic
 - cabinet
 - cavalier
 - top, front, side
- axonometric: isometric, dimetric, trimetric

Perspective Projections classified by vanishing points

- one-point perspective
- two-point perspective
- three-point perspective

Wolfgang Heidrich

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20
Axonometric Projections

projectors perpendicular to image plane

3 Equal axes 2 Equal axes 0 Equal axes
3 Equal angles 2 Equal angles 0 Equal angles

A. Isometric B. Dimetric C. Trimetric

Projective Rendering Pipeline

object world viewing
OCS O2W W2V V2C
modeling viewing projection
transformation transformation transformation

OCS - object/model coordinate system
WCS - world coordinate system
VCS - viewing/camera/eye coordinate system
CCS - clipping coordinate system
NDCS - normalized device coordinate system
DCS - device/display/screen coordinate system

C2N N2D
perspective divide viewport transformation

clipping CCS
normalized device
NDCS
device
DCS

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20
Wolfgang Heidrich
Window-To-Viewport Transformation

Generate pixel coordinates
- Map x, y from range $-1...1$ (normalized device coordinates) to pixel coordinates on the screen
- Map z from $-1...1$ to $0...1$ (used later for visibility)
- Involves 2D scaling and translation

Homogeneous Planes & Normals
Question:
- If we transform some geometry with an affine transformation, how does that affect the normal vector?

Consider:
- Rotation
- Translation
- Scaling
- Shear

Want:
- Representation for normals that allows us to easily describe how they change under affine transformation

Why?
- Normal vectors will be of special interest when we talk about lighting (next week)
Homogeneous Planes And Normals

Planes in Cartesian Coordinates:

\[\{(x, y, z)^T \mid n_x x + n_y y + n_z z + d = 0\} \]

- \(n_x, n_y, n_z\), and \(d\) are the parameters of the plane (normal and distance from origin)

Planes in Homogeneous Coordinates:

\[\{[x, y, z, w]^T \mid n_x x + n_y y + n_z z + dw = 0\} \]

Homogeneous Planes And Normals

Planes in homogeneous coordinates are represented as row vectors

\[E = [n_x, n_y, n_z, d] \]

Condition that a point \([x, y, z, w]^T\) is located in \(E\)

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w \\
\end{bmatrix} \in E = [n_x, n_y, n_z, d] \iff [n_x, n_y, n_z, d] \cdot \begin{bmatrix}
 x \\
 y \\
 z \\
 w \\
\end{bmatrix} = 0
\]

Wolfgang Heidrich
Homogeneous Planes And Normals

Transformations of planes

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix} = 0 \Leftrightarrow T([n_x, n_y, n_z, d]) \cdot (A \cdot \begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}) = 0
\]

Works for \(T([n_x, n_y, n_z, d]) = [n_x, n_y, n_z, d]A^{-1} \)

Thus: planes have to be transformed by the inverse of the affine transformation (multiplied from left as a row vector)!
Homogeneous Planes And Normals

Homogeneous Normals

- The plane definition also contains its normal
- Normal written as a vector \([n_x, n_y, n_z, 0]^T\)

\[
\begin{bmatrix}
 n_x \\
 n_y \\
 n_z \\
 0
\end{bmatrix}
\cdot
\begin{bmatrix}
 v_x \\
 v_y \\
 v_z \\
 0
\end{bmatrix}
= 0 \iff ((A^{-T} \cdot \begin{bmatrix}
 n_x \\
 n_y \\
 n_z \\
 0
\end{bmatrix}) \cdot \begin{bmatrix}
 v_x \\
 v_y \\
 v_z \\
 0
\end{bmatrix})) = 0
\]

- Thus: the normal to any surface has to be transformed by the inverse transpose of the affine transformation (multiplied from the right as a column vector)!

Transforming Homogeneous Normals

Inverse Transpose of

- Rotation by \(\alpha\)
 - Rotation by \(\alpha\)
- Scale by \(s\)
 - Scale by \(1/s\)
- Translation by \(t\)
 - Identity matrix!
- Shear by \(a\) along x axis
 - Shear by \(-a\) along y axis
Coming Up:

Wednesday:
- Quiz…!

Friday
- Lighting/shading