Affine Transformations and Transformation Hierarchies in OpenGL

Wolfgang Heidrich

Course News

Assignment 1
- Due January 31

Homework 1
- Exercise problems for transformations
- Discussed in labs next week

Reading
- Chapter 5
Theorem: The following statements are synonymous
- A transformation $T(x)$ is affine, i.e.:
 $$x' = T(x) = M \cdot x + t,$$
 for some matrix M and vector t
- $T(x)$ preserves affine combinations, i.e.
 $$T\left(\sum_{i=1}^{n} a_i \cdot x_i \right) = \sum_{i=1}^{n} a_i \cdot T(x_i), \text{ for } \sum_{i=1}^{n} a_i = 1$$
- $T(x)$ maps parallel lines to parallel lines

Example: Affine combination of 2 points
$$x = a_1 \cdot x_1 + a_2 \cdot x_2, \text{ with } a_1 + a_2 = 1$$
$$= (1 - a_2) \cdot x_1 + a_2 \cdot x_2$$
$$= x_1 + a_2 \cdot (x_2 - x_1)$$
Recap: Properties of Affine Transformations

Definition:
- A convex combination is an affine combination where all the weights a_i are positive
- Note: this implies $0 \leq a_i \leq 1, \ i=1\ldots n$

Example:
- Convex combination of 3 points
 \[x = \alpha \cdot x_1 + \beta \cdot x_2 + \gamma \cdot x_3 \]
 with $\alpha + \beta + \gamma = 1, \ 0 \leq \alpha, \beta, \gamma \leq 1$

- α, β, and γ are called Barycentric coordinates
Recap: Properties of Affine Transformations

Preservation of affine combinations:
- Can compute transformation of every point on line or triangle by simply transforming the control points

![Diagram showing affine combination preservation](image)

Recap: Homogeneous Coordinates

Homogeneous representation of points:
- Add an additional component $w=1$ to all points
- All multiples of this vector are considered to represent the same 3D point
- Use square brackets (rather than round ones) to denote homogeneous coordinates (different from text book!)

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}, \forall w \neq 0$$
Recap: Geometrically In 2D

Cartesian Coordinates:

\[
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

Recap: Geometrically In 2D

Homogeneous Coordinates:

\[
\begin{bmatrix}
 x \cdot w \\
 y \cdot w \\
 w
\end{bmatrix}
\]
Recap: Homogeneous Matrices

Affine Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 m_{1,1} & m_{1,2} & m_{1,3} & 0 \\
 m_{2,1} & m_{2,2} & m_{2,3} & 0 \\
 m_{3,1} & m_{3,2} & m_{3,3} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} +
\begin{bmatrix}
 t_x \\
 t_y \\
 t_z \\
 0
\end{bmatrix}
\]

Recap: Homogeneous Matrices

Combining the two matrices into one:

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 m_{1,1} & m_{1,2} & m_{1,3} & t_x \\
 m_{2,1} & m_{2,2} & m_{2,3} & t_y \\
 m_{3,1} & m_{3,2} & m_{3,3} & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Recap: Homogeneous Transformations

Notes:
- A composite transformation is now just the product of a few matrices
- Rather than multiply each point sequentially with 3 matrices, first multiply the matrices, then multiply each point with only one (composite) matrix
 - Much faster for large # of points!
- The composite matrix describing the affine transformation always has the bottom row 0,0,1 (2D), or 0,0,0,1 (3D)

Recap: Homogeneous Matrices

Note:
- Multiplication of the matrix with a constant does not change the transformation!

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} = T \begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} \equiv T \begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

\[
T = \begin{bmatrix}
 m_{1,1} \cdot k & m_{1,2} \cdot k & m_{1,3} \cdot k & t_x \cdot k \\
 m_{2,1} \cdot k & m_{2,2} \cdot k & m_{2,3} \cdot k & t_y \cdot k \\
 m_{3,1} \cdot k & m_{3,2} \cdot k & m_{3,3} \cdot k & t_z \cdot k \\
 1 & 0 & 0 & k
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} = T \begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} = \begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix}
\]
Recap: Homogeneous Vectors

Representing vectors in homogeneous coordinates

Need representation that is only affected by linear transformations, but not by translations
This is achieved by setting $w=0$

$$
\begin{pmatrix}
T \\
(m_{1,1} & m_{1,2} & m_{1,3} & t_x) \\
(m_{2,1} & m_{2,2} & m_{2,3} & t_y) \\
(m_{3,1} & m_{3,2} & m_{3,3} & t_z) \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
0
\end{pmatrix}
=
\begin{pmatrix}
x' \\
y' \\
z' \\
0
\end{pmatrix}
$$

Recap: Homogeneous Coordinates

Properties

- Unified representation as 4-vector (in 3D) for
 - Points
 - Vectors / directions
- Affine transformations become 4x4 matrices
 - Composing multiple affine transformations involves simply multiplying the matrices
 - 3D affine transformations have 12 degrees of freedom
 - Need mapping of 4 points to uniquely define transformation
The Rendering Pipeline

Modeling Transformation

Purpose:
- Map geometry from local object coordinate system into a global world coordinate system
- Same as placing objects

Transformations:
- Arbitrary affine transformations are possible
 - *Even more complex transformations may be desirable, but are not available in hardware*
 - Freeform deformations
Viewing Transformation

Purpose:
- Map geometry from *world coordinate system* into *camera coordinate system*
- Camera coordinate system is *right-handed*, viewing direction is *negative* z-axis
- Same a placing camera

Transformations:
- Usually only *rigid body transformations*
 - Rotations and translations
- Objects have same size and shape in camera and world coordinates

Model/View Transformation

Combine modeling and viewing transform.
- Combine both into a single matrix
- Saves computation time if many points are to be transformed
- Possible because the viewing transformation directly follows the modeling transformation without intermediate operations
Rendering Geometry in OpenGL

```c
glBegin( GL_TRIANGLES );
    glVertex3f( x1, y1, z1 ); // vertex 1 of triangle 1
    glVertex3f( x2, y2, z2 ); // vertex 2 of triangle 1
    glVertex3f( x3, y3, z3 ); // vertex 3 of triangle 1
    glVertex3f( x4, y4, z4 ); // vertex 1 of triangle 2
    glVertex3f( x5, y5, z5 ); // vertex 2 of triangle 2
    glVertex3f( x6, y6, z6 ); // vertex 3 of triangle 2
...

glEnd();
```

Additional attributes
- `glColor3f`: RGB color value (0…1 per component)
- `glNormal3f`: normal vector
- `glTexCoord2f`: texture coordinate (explained later)

OpenGL is state machine:
Every vertex gets color, normal etc. that corresponds to last specified value
Rendering Geometry in OpenGL

Example:

```c
glBegin( GL_TRIANGLES );
    glColor3f( 1.0, 0.0, 0.0 );
    glVertex3f( 1.0, 0.0, 0.0 );
    glColor3f( 0.0, 0.0, 1.0 );
    glVertex3f( 0.0, 1.0, 0.0 );
    glEnd();
```

OpenGL Naming Scheme

Function names:

- **OpenGL Prefix**
- **Operation**
- **Dimensionality**
 - 1-4
 - Missing coordinates: 0 (x,y,z) or 1 (w)
- **Type of parameters**
 - e.g. f (float)
 - d (double)
 - i (integer)
Matrix Operations in OpenGL

2 Matrices:
- Model/view matrix M
- Projective matrix P

Example:
- `glMatrixMode(GL_MODELVIEW);`
- `glLoadIdentity(); // M=Id`
- `glRotatef(angle, x, y, z); // M=Id*R(\alpha)`
- `glTranslatef(x, y, z); // M= Id*R(\alpha)*T(x,y,z)`
- `glMatrixMode(GL_PROJECTION);`
- `glRotatef(...); // P= ...`

Matrix Operations in OpenGL

Semantics:
- `glMatrixMode` sets the matrix that is to be affected by all following transformations (multiplication from the right)
- Transformations that affect a vertex first have to be specified last
- Whenever primitives are rendered with `glBegin()`, the vertices are transformed with whatever the current model/view and perspective matrix is
 - *Normals are transformed with the inverse transpose*
Matrix Operations in OpenGL

Specifying matrices (replacement)
- `glLoadIdentity()`
- `glLoadMatrixf(GLfloat *m)` // 16 floats

Specifying matrices (multiplication)
- `glMultMatrixf(GLfloat *m)` // 16 floats
- `glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)` // angle and axis
- `glScalef(GLfloat x, GLfloat y, GLfloat z)`
- `glTranslatef(GLfloat x, GLfloat y, GLfloat z)`

Matrix Operations in OpenGL

Perspective Matrices (details next lecture):
- `glFrustum(left, right, bottom, top, near, far)`
 - Specifies perspective xform (near, far are always positive)
- `glOrtho(left, right, bottom, top, near, far)`

Convenience Functions:
- `gluPerspective(fovy, aspect, near, far)`
 - Another way to do perspective
- `gluLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)`
 - Useful for viewing transform
Interpreting Composite OpenGL Transformations

Example for earlier lectures:
- Rotation around arbitrary center
- In OpenGL:

```c
// initialization of matrix
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();

// transf. of coordinate frame

// transf. of object

glTranslatef( 4, 3 );
glRotatef( 30, 0.0, 0.0, 1.0 );
glTranslatef( -4, -3 );
glBegin( GL_TRIANGLES );
// specify object geometry...
```

Transformation Hierarchies

Scene may have a hierarchy of coordinate systems
- Stores matrix at each level with incremental transform from parent's coordinate system

Scene graph

- road
- stripe1
- stripe2
- car1
- car2
- w1
- w2
- w3
- w4
Transformation Hierarchy Example

1

trans(0.30,0,0) rot(z,\theta)

Transformation Hierarchies

- Hierarchies don’t fall apart when changed
- transforms apply to graph nodes beneath
Brown Applets

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/scenegraphs.html

- Have a look later

Transformation Hierarchy Example 2

- Draw same 3D data with different transformations: instancing
Matrix Stacks

Challenge of avoiding unnecessary computation

- Using inverse to return to origin
- Computing incremental $T_1 \rightarrow T_2$

Matrix Stacks

$$D = C \text{ scale}(2,2,2) \text{ trans}(1,0,0)$$

```
glPushMatrix()
glPopMatrix()
```

```
C
B
A
```

```
C
C
A
```

DrawSquare()

```
glPushMatrix()
glScale3f(2,2,2)
glTranslate3f(1,0,0)
DrawSquare()
glPopMatrix()
```
Modularization

Drawing a scaled square

- Push/pop ensures no coord system change

```c
void drawBlock(float k) {
    glPushMatrix();

    glScalef(k,k,k);
    glBegin(GL_LINE_LOOP);
    glVertex3f(0,0,0);
    glVertex3f(1,0,0);
    glVertex3f(1,1,0);
    glVertex3f(0,1,0);
    glEnd();

    glPopMatrix();
}
```

Matrix Stacks

Advantages

- No need to compute inverse matrices all the time
- Modularize changes to pipeline state
- Avoids incremental changes to coordinate systems
 - *Accumulation of numerical errors*

Practical issues

- In graphics hardware, depth of matrix stacks is limited
 - *(typically 16 for model/view and about 4 for projective matrix)*
Transformation Hierarchy
Example 3

```
glLoadIdentity();
glTranslatef(4, 1, 0);
glPushMatrix();
glRotatef(45, 0, 0, 1);
glTranslatef(0, 2, 0);
glScalef(2, 1, 1);
glTranslatef(1, 0, 0);
glPopMatrix();
```

Transformation Hierarchy
Example 4

```
glTranslatef(x, y, 0);
glRotatef(\(\theta\), 0, 0, 1);
DrawBody();
glPushMatrix();
  glTranslatef(0, 7, 0);
  DrawHead();
  glPopMatrix();
  glPushMatrix();
  glTranslatef(2.5, 5.5, 0);
  glRotatef(\(\theta\), 0, 0, 1);
  DrawUArm();
  glTranslatef(0, -3.5, 0);
  glRotatef(\(\theta\), 0, 0, 1);
  DrawLArm();
  glPopMatrix();
... (draw other arm)
```
Hierarchical Modeling

Advantages
- Define object once, instantiate multiple copies
- Transformation parameters often good control knobs
- Maintain structural constraints if well-designed

Limitations
- Expressivity: not always the best controls
- Can’t do closed kinematic chains
 - *Keep hand on hip*

Single Parameter: simple

Parameters as functions of other params
- Clock: control all hands with seconds s
 - $m = s/60, h=m/60,$
 - $\theta_s = (2 \pi s) / 60,$
 - $\theta_m = (2 \pi m) / 60,$
 - $\theta_h = (2 \pi h) / 60$
Single Parameter: complex

Mechanisms not easily expressible with affine transforms

http://www.flying-pig.co.uk

Coming Up:

Next Week:
- Perspective projection
- Lighting/shading