CPSC 314
Computer Graphics

Wolfgang Heidrich

People

Instructor:
- Wolfgang Heidrich

TAs:
- Anika Mahmud (hourly)
- Ernesto Torres-Vidal
- Caoyu Wang
What is Computer Graphics?

Create or manipulate images with computer
- this course: algorithms for image generation

What is CG used for?

Graphical user interfaces
- Modeling systems
- Applications
Simonulation & visualization

Wolfgang Heidrich
What is CG used for?

Movies
- Animation
- Special effects

What is CG used for?

Computer games
What is CG used for?

Images
- Design
- Advertising
- Art

Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

CG!
Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

CG!

Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

Real!
Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

CG!

Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

Real!!
Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

CG!

Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

Real!
Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

Real!
Real or CG?

http://www.autodesk.com/eng/etc/fakeorfoto/quiz.html

Real!

What This Course Is About

Topics covered
- Fundamental algorithms of computer graphics
- Interactive graphics:
 - The rendering pipeline
 - Abstract model for the functioning of graphics hardware and interactive graphics systems
 - Color spaces and reflection models
 - Shadow algorithms
- Ray-tracing, global illumination

Wolfgang Heidrich
What This Course is NOT About

Topics NOT covered:
- Artistic and design issues
- Usage of commercial software packages
- Applications (i.e. game design)

Topics covered with little detail:
- Animation, Geometric Modeling
 - These have separate undergrad classes

Learning OpenGL

This is a graphics course using OpenGL
- Not a course on OpenGL

Learning API mostly on your own
- Only minimal lecture coverage
 - Basics, some of the tricky bits
- Also: ask in the labs
- OpenGL Red Book
- Many tutorial sites on the web
 - nehe.gamedev.net
Course Organization

Components:
- Lectures
- Homework problems, reading
- Labs
- Programming assignments (3+1)
- Quizzes (2)
- Final

Required skills:
- Assignments: demanding programming problems
- Exams: math heavy, lots of linear algebra, some calculus, algorithms

Course Organization

Grades and Grading
- Programming assignments: 35%
 - 5% for Assignment 0, 10% each for A1-3
- Quiz 1: 10% Quiz 2: 15%
- Final: 40%
- You MUST pass the final and the assignment portion to pass the course

- Assignment 0 is out today, due next week
 - Mostly math refresher, setting up programming environment
Course Organization

Homework problems
- NOT graded
- BUT: essential preparation for quizzes/final
- Homework helps you practice problem solving – you will learn things NOT covered in the lectures alone!

Labs
- Opportunity to work on assignments with TAs present
- TAs discuss solutions to homeworks, quizzes, etc.
 - *If you have problems solving the homeworks, go to the labs!*
- Regular labs start next week

Course Organization

Programming assignments:
- C++, Linux (or Windows, Mac)
- OpenGL graphics library / GLUT for user interface
- Labs: ICICS 005
 - *Linux machines*
 - *All assignments need to run on these machines*
- Special Lab this week
 - *Friday (noon-1pm) if for help with account setup*

Collaboration policy:
- No collaboration on programming assignments
- Reference all external resources
Course Organization

Up-to-date information:
- http://www.ugrad.cs.ubc.ca/~cs314
- WebCT (follow link from course home page)
 - Bulletin board
 - Reporting of grades

Books

Textbook:
 - Contains required reading
- Woo, Neider: OpenGL Programming Guide
 - Very useful as reference for assignments
 - This book is online: see link from course web page

Other Books:
- Foley, vanDam, Feiner, Hughes: Computer Graphics, Principles and Practice
 2nd Edition in C, Addison Wesley
Syllabus

Overview

The Rendering Pipeline (1)
- Geometry transformations, linear, affine, and perspective transformations
- Lighting/illumination
- Clipping of lines and polygons
- Vertex arrays, triangle strips, display lists

The Rendering Pipeline (2)
- Scan conversion of lines and polygons
- Shading and interpolation
- Texture mapping

The Rendering Pipeline (3)
- Modern hardware features
- Vertex shaders / pixel shaders, etc.
Syllabus

Color and reflection
- Color spaces and tristimulus theory
- Physical reflection models

Shadow Algorithms
- Shadow volumes and shadow maps

Ray-tracing, Global illumination
- Only if there is time

The Rendering Pipeline – An Overview

Wolfgang Heidrich
3D Graphics

Modeling:
- Representing object properties
 - Geometry: polygons, smooth surfaces etc.
 - Materials: reflection models etc.

Rendering:
- Generation of images from models
 - Interactive rendering
 - Ray-tracing

Animation:
- Making geometric models move and deform

Rendering

Goal:
- Transform computer models into images
- May or may not be photo-realistic

Interactive rendering:
- Fast, but until recently low quality
- Roughly follows a fixed patterns of operations
 ➢ Rendering Pipeline

Offline rendering:
- Ray-tracing
- Global illumination
Rendering

Tasks that need to be performed (in no particular order):
- Project all 3D geometry onto the image plane
 - Geometric transformations
- Determine which primitives or parts of primitives are visible
 - Hidden surface removal
- Determine which pixels a geometric primitive covers
 - Scan conversion
- Compute the color of every visible surface point
 - Lighting, shading, texture mapping

The Rendering Pipeline

What is it? All of this:
- Abstract model for sequence of operations to transform a geometric model into a digital image
- An abstraction of the way graphics hardware works
- The underlying model for application programming interfaces (APIs) that allow the programming of graphics hardware
 - OpenGL
 - Direct 3D

Actual implementations of the rendering pipeline will vary in the details
The Rendering Pipeline

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping

Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer

Rasterization → Fragment Processing

Discussion

Advantages of a pipeline structure
- Logical separation of the different components, modularity
- Easy to parallelize:
 - Earlier stages can already work on new data while later stages still work with previous data
 - Similar to pipelining in modern CPUs
 - But much more aggressive parallelization possible (special purpose hardware!)
 - Important for hardware implementations!
- Only local knowledge of the scene is necessary
Discussion

Disadvantages:
- Limited flexibility
- Some algorithms would require different ordering of pipeline stages
 - *Hard to achieve while still preserving compatibility*
- Only local knowledge of scene is available
 - *Shadows*
 - *Global illumination*

Coming Up...:

Friday:
- More details on the rendering pipeline

Next Week:
- Geometric transformations
Your Tasks Until Next Monday

Assignment 0
- Refresher of linear algebra
- Set up programming environment on lab computers

Reading (in Shirley: Introduction to CG)
- Math refresher: Chapters 2, 4
 - Optional (for now): 2.5-2.9
- Background on graphics: Chapter 1