Soft Shadows & Global Illumination

Course Topics for the Rest of the Term

Ray-tracing & Global Illumination
- This week

Parametric Curves/Surfaces
- March 30/April 1
- Taught by Robert Bridson - I will be at a conference

Overview of current research
- April 3/6 (lo Ihrke - I am still at conference)

April 8 – Final Q&A (I will be back for that)

Area Light Sources

Area lights produce soft shadows:
- In 2D:

Point lights:
- Only one light direction:
 \[L_{\text{shadow}} = \rho \cdot V \cdot l_{\text{light}} \]
- \(V \) is visibility of light (0 or 1)
- \(\rho \) is lighting model (e.g. diffuse or Phong)

Course News

Assignment 3 (project)
- Due April 1
- Demos in labs April 2-7

Reading
- Chapter 10 (ray tracing), except 10.8-10.10
- Chapter 14 (global illumination)
Are Light Sources

Area Lights:
- Infinitely many light rays
- Need to integrate over all of them.
 \[I_{\text{reflected}} = \int_{\text{light directions}} \rho(\omega) \cdot V(\omega) \cdot I_{\text{light}}(\omega) \cdot d\omega \]
- Lighting model, visibility and light intensity can now be different for every ray!

Integrating over Light Source

Rewrite the integration
- Instead of integrating over directions
 \[I_{\text{reflected}} = \int_{\text{light directions}} \rho(\omega) \cdot V(\omega) \cdot I_{\text{light}}(\omega) \cdot d\omega \]
 we can integrate over points on the light source
 \[I_{\text{reflected}}(q) = \int \frac{\rho(p - q) \cdot V(p - q) \cdot I_{\text{light}}(p) \cdot ds \cdot dt}{|p - q|^2} \]
 where \(q \) point on reflecting surface, \(p = F(s, t) \) is a point on the area light
 - We are integrating over \(p \)
 - Denominator: quadratic falloff

Integration

Problem:
- Except for the simplest of scenes, either integral is **not solvable analytically**!
- This is mostly due to the visibility term, which could be arbitrarily complex depending on the scene

So:
- Use numerical integration
- Effectively: approximate the light with a whole number of point lights

Numerical Integration

Regular grid of point lights
- Problem: will see 4 hard shadows rather than soft shadow
- Need LOTS of points to avoid this problem

Monte Carlo Integration

Better:
- **Randomly** choose the points
- Use different points on light for computing the lighting in different points on reflecting surface
- This produces random noise
- Visually preferable to structured artifacts
Monte Carlo Integration

Formally:
- Approximate integral with finite sum
 \[I_{\text{approx}}(q) = \int_{p} p(p - q) \cdot V(p - q) \cdot I_{\text{light}}(p) \cdot ds \cdot dt \]
 \[= \frac{1}{N} \sum_{i=1}^{N} p(p_i - q) \cdot V(p_i - q) \cdot I_{\text{light}}(p_i) \]

where
- The \(p \) are randomly chosen on the light source
- With equal probability!
- \(N \) is the total area of the light

Note:
- This approach of approximating lighting integrals with sums over randomly chosen points is much more flexible than this!
- In particular, it can be used for global illumination
 - Light bouncing off multiple surfaces before hitting the eye

Sampling

Sample directions vs. sample light source
- Most directions do not correspond to points on the light source
 - Thus, variance will be higher than sampling light directly

Global Illumination

So far:
- Have considered only light directly coming from the light sources
 - As well as mirror reflections, refraction

In reality:
- Light bouncing off diffuse and/or glossy surfaces also illuminates other surfaces
 - This is called global illumination

Direct Illumination

Global Illumination
Rendering Equation

Equation guiding global illumination:
\[
L_i(x,\omega_i) = L_e(x,\omega_i) + \int \rho(x,\omega_i,\omega_o) L_e(x,\omega_o) d\omega_o
\]

Where
- \(\rho \) is the reflectance from \(\omega_o \) to \(\omega_i \) at point \(x \)
- \(L_i \) is the outgoing (i.e. reflected) \textit{radiance} at point \(x \) in direction \(\omega_i \)
 - Radiance is a specific physical quantity describing the amount of light along a ray
 - Radiance is constant along a ray
- \(L_e \) is the emitted radiance (=0 unless point \(x \) is on a light source)
- \(R \) is the "ray-tracing function". It describes what point it will hit next.

Note:
- The rendering equation is an \textit{integral equation}
- This equation cannot be solved directly
 - Ray-tracing function is complicated!
 - Similar to the problem we had computing illumination from area light sources!

Ray Casting

- Cast a ray from the eye through each pixel
- The following few slides are from Fred Durand (MIT)

Ray Tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

Monte Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
 - Accumulate radiance contribution

Monte Carlo Ray Tracing

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse
Monte Carlo
- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse

Monte Carlo Path Tracing

In practice:
- Do not branch at every intersection point
- This would have exponential complexity in the ray depth!
- Instead:
- Shoot some number of primary rays through the pixel (10s-1000s, depending on scene!)
- For each pixel and each intersection point, make a single random decision in which direction to go next

How to Sample?

Simple sampling strategy:
- At every point, choose between all possible reflection directions with equal probability
- This will produce very high variance/noise if the materials are specular or glossy
- Lots of rays are required to reduce noise!

Better strategy: Importance sampling
- Focus rays in areas where most of the reflected light contribution will be found
- For example: if the surface is a mirror, then only light from the mirror direction will contribute!
- Glossy materials: prefer rays near the mirror

Monte Carlo Path Tracing
- Systematically sample primary light

Monte Carlo Path Tracing
- Trace only one secondary ray per recursion
- But send many primary rays per pixel
- (performs antialiasing as well)
How to Sample?

Sampling strategies are still an active research area!
- Recent years have seen drastic advances in performance
- Lots of excellent sampling strategies have been developed in statistics and machine learning
 - Many are useful for graphics

Objective:
- Compute light transport in scenes using stochastic ray tracing
 - Monte Carlo, Sequential Monte Carlo
 - Metropolis

[Barthe, Gharbi, Heidrich '05]
[Gharbi, Heidrich '06]
[Gharbi, Doucet, Heidrich '08]

How to Sample?

- E.g. importance sampling (left) vs. Sequential Monte Carlo (right)

More on Global Illumination

This was a (very) quick overview
- More details in CPSC 514 (Computer Graphics: Rendering)
- Next offered in January 2010

Coming Up

Monday/Wednesday:
- Curves & surfaces (Robert Bridson)

Friday:
- Overview of current research topics (Ivo Ihrke)

Monday (April 8):
- Research demos (Ivo & my PhD students)