Course News

Assignment 3 (project)
- Due April 1

Reading (this week)
- Chapter 20 (color)

Reading (this week & next)
- Chapter 10 (ray tracing)

Course Topics for the Rest of the Term

Color
- Monday, Today

Ray-tracing & Global Illumination
- Friday, next week

Parametric Curves/Surfaces
- March 30/April 1
- Taught by Robert Bridson - I will be at a conference

Overview of current research
- April 3/6 (Ivo Ihrke - I am still at conference)

April 8 – Final Q&A (I will be back for that)

Electromagnetic Spectrum

Light Sources

Common light sources differ in the kind of spectrum they emit:
- Continuous spectrum
 - Energy is emitted at all wavelengths
 - Blackbody radiation
 - Tungsten light bulbs
 - Certain fluorescent lights
 - Sunlight
 - Electrical arcs
- Line spectrum
 - Energy is emitted at certain discrete frequencies

Blackbody Radiation

Black body
- Dark material, so that reflection can be neglected
- Spectrum of emitted light changes with temperature
 - This is the origin of the term "color temperature"
 - E.g. when setting a white point for your monitor
 - Cold: mostly infrared
 - Hot: redish
 - Very hot: bluish
- Demo:
Line Spectrum

Examples:
- Ionized gases
- Lasers
- Some fluorescent lamps

Physiology of Vision

The retina
- Rods
 - B/w edges
- Cones
 - Color

Physiology of Vision

Center of retina is densely packed region called the fovea.
- Cones much denser here than the periphery

Color/Lightness Constancy

Do they match?

Color Constancy

- Automatic ‘white balance’ from change in illumination
- Vast amount of processing behind the scenes!
- Colorimetry vs. perception

Image courtesy of John McEntee
Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 **primaries**
- Colors that look the same but have different spectra are called **metamers**

Color Matching Experiments

Performed in the 1930s

- Idea: perceptually based measurement
 - shine given wavelength \(\lambda \) on a screen
 - User must control three pure lights producing three other wavelengths (say \(R=700 \) nm, \(G=546 \) nm, and \(B=438 \) nm)
 - Adjust intensity of RGB until colors are identical

Negative Lobes

- **Actually:**
 - Exact target match possible sometimes requires *negative light*
 - Some red has to be added to target color to permit exact match using “knobs” on RGB intensity output
 - Equivalent mathematically to removing red from RGB output

Color Matching Experiment

Results

- It was found that any color \(S(\lambda) \) could be matched with three suitable primaries \(A(\lambda), B(\lambda), \) and \(C(\lambda) \)
 - Used monochromatic light at 438, 546, and 700 nanometers
 - Also found the space is linear, i.e. if
 \[
 R(\lambda) = S(\lambda)
 \]
 then
 \[
 R(\lambda) + M(\lambda) = S(\lambda) + M(\lambda)
 \]
 and
 \[
 k \cdot R(\lambda) = k \cdot S(\lambda)
 \]

Determine Matching for Arbitrary Spectra

Given

- Some light spectrum \(s(\lambda) \)

How do we find \(R, G, B \)?

- Coefficients to describe color of \(s(\lambda) \) in RGB space
 - i.e. as mixtures of the specific monochromatic colors mentioned!

Notation

Don’t confuse:

- **Primaries:** the spectra of the three different light sources: \(R, G, B \)
 - For the matching experiments, these were monochromatic (i.e. single wavelength) light!
 - Display primaries usually have a wider spectrum
- **Coefficients \(R, G, B \):**
 - Specify how much of \(R, G, B \) is in a given color
 - Color matching functions: \(r(\lambda), g(\lambda), b(\lambda) \)
 - Specify how much of \(R, G, B \) is needed to produce a color that is a metamer for pure monochromatic light of wavelength \(\lambda \)
Determine Matching for Arbitrary Spectra

Given
- Some light spectrum $s(\lambda)$

How do we find R, G, B?
- Coefficients to describe color of $s(\lambda)$ in RGB space

A: Integrate with color matching functions
- Treat spectra as vector space
- Dot product of s_1, s_2 defined as
- $R = \int s(\lambda)r(\lambda)d\lambda$
- $G = \int s(\lambda)g(\lambda)d\lambda$
- $B = \int s(\lambda)b(\lambda)d\lambda$

Negative Lobes

In general:
- It is **not** possible to find three color primaries (monochromatic or continuous spectrum) that can produce all visible colors with **positive** weights

Q: How can this be?
- We only have 3 types of cones, after all?

Negative Lobes

In general:
- It is **not** possible to find three color primaries (monochromatic or continuous spectrum) that can produce all visible colors with **positive** weights

Q: How can this be?
- We only have 3 types of cones, after all?

A: the spectral sensitivity curves of cones overlap
- i.e. the cones span a linear color (vector) space, but this space is not **orthonormal**
- Orthonormalization introduces negative weights...

Matching Functions - CIE Color Space

- CIE defined three "imaginary" lights X, Y, and Z, any wavelength λ can be matched perceptually by positive combinations

Matching Functions - Measured vs. CIE Color Spaces

- Measured basis
 - Monochromatic lights
 - Physical observations
 - Negative lobes

- Transformed basis
 - "Imaginary" lights
 - All positive, unit area matching functions
 - Y is luminance, no hue
 - X,Z no luminance
Notation

Don't confuse:
- Synthetic primaries X, Y, Z
 - Contain negative frequencies
 - Do not correspond to visible colors
- Color matching functions x(λ), y(λ), z(λ)
 - Are non-negative everywhere
- Coefficients X, Y, Z
- Normalized chromaticity values

\[x = \frac{X}{X + Y + Z}, \quad y = \frac{Y}{X + Y + Z}, \quad z = \frac{Z}{X + Y + Z} \]

CIE Gamut and Chromaticity Diagram

3D gamut

Chromaticity diagram
- Hue only, no intensity

Facts about the CIE “Horseshoe” Diagram

- All visible colors lie inside the horseshoe
 - Result from color matching experiments
- Spectral (monochromatic) colors lie around the border
 - The straight line between blue and red contains the purple tones
- Colors combine linearly (i.e. along lines), since the xy-plane is a plane from a linear space

Facts about the CIE “Horseshoe” Diagram (cont.)

A point C can be chosen as a white point corresponding to an illuminant
- Usually this point is of the curve swept out by the black body radiation spectra for different temperatures
- Relative to C, two colors are called complementary if they are located along a line segment through C, but on opposite sides (i.e. C is an affine combination of the two colors)
- The dominant wavelength of the color is found by extending the line from C through the color to the edge of the diagram
- Some colors (i.e. purples) do not have a dominant wavelength, but their complementary color does

CIE Diagram

- Blackbody curve
- Illumination:
 - Candle 2000K
 - Light bulb 3000K (A)
 - Sunlight/
 - Blue 6500K (D)
 - Overcast day 7000K
 - Lightning 32,000K

Color Interpolation, Dominant & Opponent Wavelength

Complementary wavelength
RGB Color Space (Color Cube)

Define colors with (r, g, b) amounts of red, green, and blue
- Used by OpenGL
- Hardware-centric
- Describes the colors that can be generated with specific RGB light sources

RGB color cube sits within CIE color space
- Subset of perceivable colors
- Scaled, rotated, sheared cube

Device Color Gamuts

Use CIE chromaticity diagram to compare the gamuts of various devices
- X, Y, and Z are hypothetical light sources, not used in real-world applications

Gamut Mapping

What does this color go to?

Additive vs. Subtractive Colors

Additive: light
- Monitors, LCDs
- RGB model

Subtractive: pigment
- Printers
- CMY(K) model

HSV Color Space

More intuitive color space for people
- H = Hue
- S = Saturation
- V = Value
 - Or brightness B
 - Or intensity i

Monitors

Monitors have nonlinear response to input
- Characterize by gamma
 - displayedIntensity = a^gamma (maxIntensity)

Gamma correction
- displayedIntensity = \(\left(\frac{1}{a} \right)^{\gamma} \) (maxIntensity)
 - a (maxIntensity)

Gamma for CRTs:
- Around 2.4
Coming Up...

Friday, next week:
- Ray-tracing