Clipping

Wolfgang Heldrich

Course News

Assignment 2
- Due March 2

Homework 4
- Out today

Reading (this week)
- Chapter 8

Reading (reading week)
- Rehearsal: Ch. 2, 3 (except 3.8), 6, 7, 8
- New: remainder of Ch. 2, Ch. 12

The Rendering Pipeline

Geometry Database
Model/View Transform
Lighting
Perspective Transform
Clipping

Geometry Processing

Scan Conversion
Texturing
Depth Test
Blending
Frame-buffer

Line Clipping

Purpose
- Originally: 2D
 - Determine portion of line inside an axis-aligned rectangle (screen or window)
- 3D
 - Determine portion of line inside axis-aligned parallelepiped (viewing frustum in NDC)
 - Simple extension to the 2D algorithms

Line Clipping

Outcodes (Cohen, Sutherland '74)
- 4 flags encoding position of a point relative to top, bottom, left, and right boundary
- E.g.:
 - OC(p1)=0010
 - OC(p2)=0000
 - OC(p3)=1001

Line Clipping

Outcodes (Cohen, Sutherland '74)
- 4 flags encoding position of a point relative to top, bottom, left, and right boundary
- E.g.:
 - OC(p1)=0010
 - OC(p2)=0000
 - OC(p3)=1001

Window

\[x_{\text{min}} \leq x \leq x_{\text{max}} \]
\[y_{\text{min}} \leq y \leq y_{\text{max}} \]
Line Clipping

Line segment:
- \((p_1, p_2)\)

Trivial cases:
- \(OC(p_1) = 0 \& OC(p_2) = 0\)
 - Both points inside window, thus line segment completely visible (trivial accept)
- \(OC(p_1) \& OC(p_2) = 0\) (i.e. bitwise “and”)
 - There is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - Thus line segment completely outside window (trivial reject)

\(\alpha\)-Clipping
- Handling of all the non-trivial cases
- Improvement of earlier algorithms (Cohen/Sutherland, Cyrus/Beck, Liang/Barsky)
- Define window-edge-coordinates of a point \(p=(x, y)\):
 - \(WEC_x(p) = x - x_{min}\)
 - \(WEC_x(p) = x_{max} - x\)
 - \(WEC_y(p) = y_{max} - y\)
 - \(WEC_y(p) = y - y_{min}\)

 Negative if outside!

\(\alpha\)-Clipping: algorithm
```cpp
alphaClip(p1, p2, window) {
    Determine window-edge-coordinates of p1, p2
    Determine outcodes OC(p1), OC(p2)
    Handle trivial accept and reject
    \(\alpha_1 = 0\); // line parameter for first point
    \(\alpha_2 = 1\); // line parameter for second point
    ...}
```

\(\alpha\)-Clipping: algorithm (cont.)
```cpp
    // now clip point p1 against all edges
    if (OC(p1) \& LEFT_FLAG ) {
        \(\alpha = WEC_y(p)/(WEC_x(p1) - WEC_x(p2));\)
        \(\alpha_1 = \max(\alpha_1, \alpha);\)
    }
    ...}
```

Similarly clip p1 against other edges
Line Clipping

\(\alpha \)-Clipping: example for clipping \(p_1 \)

\begin{align*}
P_1 & \quad (t=1)p_1+1.p_2 \\
(1-t)p_1+1.p_2 & \quad (1-t)p_1+1.p_2 \\
& \quad (1-t)p_1+1.p_2 \\
& \quad \text{left} \\
& \quad \text{Start configuration} \\
& \quad \text{After clipping to left} \\
& \quad \text{After clipping to top} \\

P_2 & \quad \text{top} \\
& \quad \text{p_2} \\
& \quad \text{p_2} \\
& \quad \text{p_2} \\
& \quad \text{p_2} \\

\end{align*}

Line Clipping

\(\alpha \)-Clipping: algorithm (cont.)

- \(\text{wrap-up} \)
- \(\text{if}(a_1 > a_2) \)
 - \(\text{no output} \)
 - \(\text{else} \)
 - \(\text{output line from } p_1+\alpha_1(p_2-p_1) \) to \(p_1+\alpha_2(p_2-p_1) \)
- \(\text{end of algorithm} \)

Line Clipping

\(\alpha \)-Clipping: algorithm (cont.)

- \(\text{if}(OC(p_2) \& \text{LEFT}_{\text{FLAG}}) \{ \)
 - \(\alpha = \text{WEC}_L(p_2)/(\text{WEC}_L(p_1) - \text{WEC}_L(p_2)); \)
 - \(\alpha_2 = \min(\alpha_2, \alpha); \)
- \(\text{Similarly clip } p_1 \text{ against other edges} \)

Line Clipping

Example

\begin{align*}
P_1 & \quad \text{top} \\
(1-t)p_1+1.p_2 & \quad (1-t)p_1+1.p_2 \\
& \quad (1-t)p_1+1.p_2 \\
& \quad \text{left} \\
& \quad \text{Start configuration} \\
& \quad \text{After clipping } p_1 \\
& \quad \text{After clipping } p_2 \\

P_2 & \quad \text{top} \\
& \quad \text{p_2} \\
& \quad \text{p_2} \\
& \quad \text{p_2} \\
& \quad \text{p_2} \\

\end{align*}

Line Clipping

Another Example

\begin{align*}
(1-t)p_1+1.p_2 & \quad (1-t)p_1+1.p_2 \\
(1-t)p_1+1.p_2 & \quad (1-t)p_1+1.p_2 \\
& \quad (1-t)p_1+1.p_2 \\
& \quad \text{left} \\
& \quad \text{Start configuration} \\
& \quad \text{After clipping } p_1 \\
& \quad \text{After clipping } p_2 \\

\end{align*}

Line Clipping in 3D

Approach:

- Clip against parallelepiped in NDC (after perspective transform)
- Means that the clipping volume is always the same!
 - OpenGL: \(z_{\min} = \gamma_{\min} = -1, z_{\max} = \gamma_{\max} = 1 \)
- Boundary lines become boundary planes
 - But outcodes and WECs still work the same way
 - Additional front and back clipping plane
 - \(z_{\min} = 1, z_{\max} = 1 \) in OpenGL
Line Clipping

Extensions
- Algorithm can be extended to clipping lines against
 - Arbitrary convex polygons (2D)
 - Arbitrary convex polytopes (3D)

![Line Clipping Diagram](image)

Non-convex clipping regions
- E.g. windows in a window system!

![Non-convex Clipping Region](image)

Line Clipping

Non-convex clipping regions
- Problem: arbitrary number of visible line segments
- Different approaches:
 - Break down polygon into convex parts
 - Scan convert for full window, and discard hidden pixels

![Non-convex Clipping Diagram](image)

Polygon Clipping

Objective
- 2D: clip polygon against rectangular window
 - Or general convex polygons
 - Extensions for non-convex or general polygons
- 3D: clip polygon against parallelepiped
 - Left, right, top, bottom, near, far planes

![Polygon Clipping Diagram](image)

Polygon Clipping

Triangles Scan-Converted with Edge Equations:*
- Go over each pixel in bounding rectangle
- Check if pixel is inside/outside of triangle

![Triangular Scan Conversion](image)

Triangle Clipping (w/ Edge Equation Scan Conversion)

Note:
- Once we use edge equations, we no longer really have to clip the geometry against window boundary!
 - Instead: clip bounding rectangle against window
 - Only evaluate edge equations for pixels inside the window!
- Near/far clipping: when interpolating depth values, detect whether point is closer than near or farther than far
 - If so, don’t draw it

![Triangle Clipping Diagram](image)
General Polygon Clipping

Task:
- Clipping of general polygons
- Convex and concave
- Works with other scan conversion algorithms
 - *Independent of edge equations*

Polygon Clipping

Not just clipping all boundary lines
- May have to introduce new line segments

Polygon Clipping

Classes of Polygons
- Triangles
- Convex
- Concave
- Holes and self-intersection

Polygon Clipping

Sutherland/Hodgeman Algorithm (’74)
- Arbitrary convex or concave object polygon
 - Restriction to triangles does not simplify things
- Convex subject polygon (window)

Polygon Clipping

Sutherland/Hodgeman Algorithm (’74)
- Approach: clip object polygon independently against all edges of subject polygon

```c
clipPolygonToEdge( p[n], edge ) {
  for(i = 0; i<n; i++) {
    if( p[i] inside edge ) {
      if( p[i-1] inside edge ) // p[-1]=p[n-1]
        output p[i],
      else {
        p = intersect( p[i-1], p[i], edge );
        output p, p[i];
      }
      else…
  }
} else…
```
Polygon Clipping

Clipping against one edge (cont)
- \(p[i] \) inside: 2 cases

<table>
<thead>
<tr>
<th>inside</th>
<th>outside</th>
<th>inside</th>
<th>outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p[i-1])</td>
<td>(p[i])</td>
<td>(p[i])</td>
<td>(p[i-1])</td>
</tr>
</tbody>
</table>

Output: \(p[i] \)

Clipping against one edge (cont)
- \(p[i] \) outside: 2 cases

<table>
<thead>
<tr>
<th>inside</th>
<th>outside</th>
<th>inside</th>
<th>outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p[i-1])</td>
<td>(p[i])</td>
<td>(p[i])</td>
<td>(p[i-1])</td>
</tr>
</tbody>
</table>

Output: \(p \)

Output: nothing

Polygon Clipping

Sutherland/Hodgeman Algorithm
- Inside/outside tests: outcodes
- Intersection of line segment with edge: window-edge coordinates
- Similar to Cohen/Sutherland algorithm for line clipping

Example

Sutherland/Hodgeman Algorithm
- Discussion:
 - Works for concave polygons
 - But generates degenerate cases
Polygon Clipping

Sutherland/Hodgeman Algorithm
- Discussion:
 - Clipping against individual edges independent
 - Great for hardware (pipelining)
 - All vertices required in memory at the same time
 - Not so good, but unavoidable
 - Another reason for using triangles only in hardware rendering

Other Polygon Clipping Algorithms
- WalkerAesthetics '77:
 - Arbitrary concave polygons with holes both as subject and as object polygon
- Vatti '92:
 - Self-intersection allowed as well
- ... many more
 - Improved handling of degenerate cases
 - But not often used in practice due to high complexity

Occlusion
- For most interesting scenes, some polygons overlap
- To render the correct image, we need to determine which polygons occlude which

Painter's Algorithm
- Simple: render the polygons from back to front, "painting over" previous polygons
- Draw cyan, then green, then red
 will this work in the general case?

Painter's Algorithm: Problems
- **Intersecting polygons** present a problem
- Even non-intersecting polygons can form a cycle with no valid visibility order:
Hidden Surface Removal

Object Space Methods:
- Work in 3D before scan conversion
 - *E.g. Painter’s algorithm*
- Usually independent of resolution
 - *Important to maintain independence of output device (screen/printer etc.)*

Image Space Methods:
- Work on per-pixel/per fragment basis after scan conversion
- Z-Buffer/Depth Buffer
- Much faster, but resolution dependent

The Z-Buffer Algorithm

Idea: retain depth after projection transform
- Each vertex maintains z coordinate
 - Relative to eye point
- Can do this with canonical viewing volumes

Augment color framebuffer with Z-buffer

- Stores z value at each pixel
- At frame beginning, initialize all pixel depths to \(\infty \)
- When scan converting: interpolate depth (z) across polygon
- Check z-buffer before storing pixel color in framebuffer and storing depth in z-buffer
- Don’t write pixel if its z value is more distant than the z value already stored there

Z-Buffer

Store (r, g, b, z) for each pixel
- Typically 8+8+8+24 bits, can be more

```c
for all i, j { 
    Depth[i, j] = MAX_DEPTH 
    Image[i, j] = BACKGROUND_COLOUR 
} 
for all polygons P {
    for all pixels in P { 
        if (z_pixels < Depth[i, j]) {
            Image[i, j] = C_pixel 
            Depth[i, j] = Z_pixel 
        }
    }
}
```

Interpolating Z

Edge walking
- Just interpolate Z along edges and across spans

Barycentric coordinates
- Interpolate z like other parameters
 - *E.g. color*
The Z-Buffer Algorithm (mid-70's)

History:
- Object space algorithms were proposed when memory was expensive
- First 512x512 framebuffer was >50,000!

Radical new approach at the time
- The big idea:
 - Resolve visibility independently at each pixel

Depth Test Precision

- Reminder: projective transformation maps eye-space z to generic z-range (NDC)
- Simple example
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & a & b \\
 0 & 0 & -1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
 \end{bmatrix}
 \]
- Thus:
 \[
 z_{\text{NDC}} = \frac{ax' + b}{z'} = \frac{a + b}{z_{\text{NDC}}}
 \]

Depth Test Precision

- Therefore, depth-buffer essentially stores 1/z, rather than z!
- Issue with integer depth buffers
 - High precision for near objects
 - Low precision for far objects

Depth Test Precision

- Low precision can lead to depth fighting for far objects
 - Two different depths in eye space get mapped to same depth in framebuffer
 - Which object “wins” depends on drawing order and scan-conversion
- Gets worse for larger ratios \(f/n \)
 - Rule of thumb: \(f/n < 1000 \) for 24 bit depth buffer
- With 16 bits cannot discern millimeter differences in objects at 1 km distance

Z-Buffer Algorithm Questions

- How much memory does the Z-buffer use?
- Does the image rendered depend on the drawing order?
- Does the time to render the image depend on the drawing order?
- How does Z-buffer load scale with visible polygons? with framebuffer resolution?

Z-Buffer Pros

- Simple!!!
- Easy to implement in hardware
 - Hardware support in all graphics cards today
- Polygons can be processed in arbitrary order
- Easily handles polygon interpenetration
Z-Buffer Cons

- Poor for scenes with high depth complexity
 - Need to render all polygons, even if most are invisible

- Shared edges are handled inconsistently
 - Ordering dependent

- Requires lots of memory
 - e.g. 1280x1024x32 bits

- Requires fast memory
 - Read-Modify-Write in inner loop

- Hard to simulate transparent polygons
 - We throw away color of polygons behind closest one
 - Works if polygons ordered back-to-front
 - Extra work throws away much of the speed advantage

Object Space Algorithms

- Determine visibility on object or polygon level
 - Using camera coordinates

- Resolution independent
 - Explicitly compute visible portions of polygons

- Early in pipeline
 - After clipping

- Requires depth-sorting
 - Painter’s algorithm
 - BSP trees

Object Space Visibility Algorithms

- What is the minimum worst-case cost of computing the fragments for a scene composed of \(n \) polygons?
 - Answer: \(O(n^2) \)

Object Space Visibility Algorithms

- So, for about a decade (late 60s to late 70s) there was intense interest in finding efficient algorithms for hidden surface removal

- We’ll talk about one:
 - Binary Space Partition (BSP) Trees
 - Still in use today for ray-tracing, and in combination with z-buffer
Binary Space Partition Trees (1979)

BSP Tree: partition space with binary tree of planes
- Idea: divide space recursively into half-spaces by choosing splitting planes that separate objects in scene
- Preprocessing: create binary tree of planes
- Runtime: correctly traversing this tree enumerates objects from back to front
Splitting Objects

No bunnies were harmed in previous example

But what if a splitting plane passes through an object?

- Split the object; give half to each node

Traversing BSP Trees

Tree creation independent of viewpoint

- Preprocessing step

Tree traversal uses viewpoint

- Runtime: happens for many different viewpoints
 - Each plane divides world into near and far
 - For given viewpoint, decide which side is near and which is far
 - Check which side of plane viewpoint is on independently for each tree vertex
 - Tree traversal differs depending on viewpoint!
 - Recursive algorithm
 - Recurse on far side
 - Draw object
 - Recurse on near side

```c
renderBSP(BSPtree *T)
  BSPtree *near, *far;
  if (eye on left side of T->plane)
    near = T->left; far = T->right;
  else
    near = T->right; far = T->left;
  renderBSP(far);
  if (T is a leaf node)
    renderObject(T);
  renderBSP(near);
```

BSP Trees: Viewpoint A

- decide independently at each tree vertex
- not just left or right child!
BSP Tree Traversal: Polygons

- Split along the plane defined by any polygon from scene
- Classify all polygons into positive or negative half-space of the plane
 - If a polygon intersects plane, split polygon into two and classify them both
- Recurse down the negative half-space
- Recurse down the positive half-space

Summary: BSP Trees

Pros:
- Simple, elegant scheme
- Correct version of painter’s algorithm back-to-front rendering approach
- Still very popular for video games (but getting less so)

Cons:
- Slow(ish) to construct tree: $O(n \log n)$ to split, sort
- Splitting increases polygon count: $O(n^2)$ worst-case
- Computationally intense preprocessing stage restricts algorithm to static scenes

BSP Demo

Useful demo:

http://symbolcraft.com/graphics/bsp

Coming Up:

After Reading Week

- More hidden surface removal
- Blending
- Texture mapping