Shading
Clipping
Wolfgang Heidrich

Course News
Assignment 2
Due March 2
Homework 4
Out today
Reading
Chapter 8

The Rendering Pipeline

Shading
Input to Scan Conversion:
- Vertices of triangles (lines, quadrilaterals...)
- Color (per vertex)
 - Specified with glColor
 - Or: computed with lighting
- World-space normal (per vertex)
 - Left over from lighting stage

Shading Task:
- Determine color of every pixel in the triangle

How can we assign pixel colors using this information?
- Easiest: flat shading
 - Whole triangle gets one color (color of 1st vertex)
- Better: Gouraud shading
 - Linearly interpolate color across triangle
- Even better:
 - Linearly interpolate the normal vector
 - Compute lighting for every pixel
 - Note: not supported by rendering pipeline as discussed so far

Flat Shading
- Simplest approach calculates illumination at a single point for each polygon
- Obviously inaccurate for smooth surfaces
Flat Shading Approximations

If an object really is faceted, is this accurate?

- For point sources, the direction to light varies across the facet.
- For specular reflectance, direction to eye varies across the facet.

Improving Flat Shading

What if evaluate Phong lighting model at each pixel of the polygon?
- Better, but result still clearly faceted

For smoother-looking surfaces we introduce **vertex normals at each vertex**
- Usually different from facet normal
- Used only for shading
- Think of as a better approximation of the real surface that the polygons approximate

Vertex Normals

Vertex normals may be
- Provided with the model
- Computed from first principles
- Approximated by averaging the normals of the facets that share the vertex

Gouraud Shading Artifacts

often appears dull, chalky lacks accurate specular component
- If included, will be averaged over entire polygon
 - This interior shading missed!
 - This vertex shading spread over too much area

Mach bands
- Eye enhances discontinuity in first derivative
- Very disturbing, especially for highlights
Phong Shading

- Linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel
- Same input as Gouraud shading
- Pros: much smoother results
- Cons: considerably more expensive

Not the same as Phong lighting
- Common confusion
- Phong lighting: empirical model to calculate illumination at a point on a surface

Phong Shading Difficulties

- Computationally expensive
 - Per-pixel vector normalization and lighting computation!
 - Floating point operations required
- Lighting after perspective projection
 - Messes up the angles between vectors
 - Have to keep eye-space vectors around
- No direct support in standard rendering pipeline
 - But can be simulated with texture mapping, procedural shading hardware (see later)

Shading Artifacts: Silhouettes

- Polygonal silhouettes remain
- Gouraud vs Phong

How to Interpolate?

- Need to propagate vertex attributes to pixels
 - Interpolate between vertices:
 - z (depth)
 - r, g, b color components
 - N_x, N_y, N_z, surface normals
 - u, v texture coordinates (talk about these later)
 - Three equivalent ways of viewing this (for triangles)
 1. Linear interpolation
 2. Barycentric coordinates
 3. Plane Equation

1. Linear Interpolation

- Interpolate quantity along L and R edges
 - (as a function of y)
 - Then interpolate quantity as a function of x

I_{\text{total}} = k_a I_{\text{ambient}} + \sum_{k=1}^{n} I_k \left(k_d \left(\mathbf{n} \cdot \mathbf{l}_k \right) + k_s \left(\mathbf{v} \cdot \mathbf{r}_k \right)^n \right)

Remember: normals used in diffuse and specular terms
discontinuity in normal's rate of change harder to detect
Linear Interpolation
Most common approach, and what OpenGL does
- Perform Phong lighting at the vertices
- Linearly interpolate the resulting colors over faces
 - Along edges
 - Along scanlines

Same as Barycentric Coordinates!

edge: mix of c_1, c_2

interior: mix of c_1, c_2, c_3

2. Barycentric Coordinates
Have seen this before
- Barycentric Coordinates: weighted combination of vertices, with weights summing to 1
 \[P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3 \]
 \[\alpha + \beta + \gamma = 1 \]
 \[0 \leq \alpha, \beta, \gamma \leq 1 \]

\[P_1 (0,0,0) \]
\[P_2 (0,1,0) \]
\[P_3 (1,0,0) \]

Barycentric Coordinates
- Convex combination of 3 points
 \[x = \alpha \cdot x_1 + \beta \cdot x_2 + \gamma \cdot x_3 \]
 with $\alpha + \beta + \gamma = 1$, $0 \leq \alpha, \beta, \gamma \leq 1$
- α, β, and γ are called barycentric coordinates

How to compute areas?
- Cross products!
 \[A_i = \frac{1}{2} (x_2 - x_1) \times (x - x_i) \]

3. Plane Equation
Observation: Quantities vary linearly across image plane
- E g: $r = Ax + By + C$
 - r = red channel of the color
 - Same for g, b, Nx, Ny, Nz, z
- From info at vertices we know:
 \[r_1 = Ax_1 + By_1 + C \]
 \[r_2 = Ax_2 + By_2 + C \]
 \[r_3 = Ax_3 + By_3 + C \]
- Solve for A, B, C
- One-time set-up cost per triangle and interpolated quantity
Discussion

Which algorithm to use when?
- Scanline interpolation
 - Together with trapezoid scan conversion
- Plane equations
 - Together with edge equation scan conversion
- Barycentric coordinates
 - Not useful in the current context
 - But: method of choice for ray-tracing
 - Whenever you only need to compute the value for a single pixel

Clipping

Wolfgang Heidrich

Line Clipping

Purpose
- Originally: 2D
 - Determine portion of line inside an axis-aligned rectangle (screen or window)
- 3D
 - Determine portion of line inside axis-aligned parallelepiped (viewing frustum in NDC)
 - Simple extension to the 2D algorithms

Line Clipping

Outcodes (Cohen, Sutherland '74)
- 4 flags encoding position of a point relative to top, bottom, left, and right boundary
- E.g.:
 - OC(p1)=0010
 - OC(p2)=0000
 - OC(p3)=1001
 - OC(p4)=1010
 - 0010
 - 0000
 - 0001
 - 0110
 - 0100
 - 0101

Line segment:
- \((p1, p2)\)

Trivial cases:
- \(\text{OC}(p1)=0 \& \& \text{OC}(p2)=0\)
 - Both points inside window, thus line segment completely visible (trivial accept)
- \(\text{OC}(p1) \& \& \text{OC}(p2))=0\) (i.e. bitwise “and”)
 - There is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - Thus line segment completely outside window (trivial reject)
Line Clipping

\[\alpha \text{-Clipping} \]
- Line segment defined as: \(p_1 + \alpha(p_2 - p_1) \)
- Intersection point with one of the borders (say, left):
 \[x_i + \alpha (x_i - x_i) = x_{\text{ext}} \quad \Leftrightarrow \quad \alpha = \frac{x_{\text{ext}} - x_i}{x_i - x_i} \]
 \[= \frac{x_{\text{ext}} - x_i}{(x_i - x_{\text{ext}}) - (x_i - x_{\text{ext}})} \]
 \[= \frac{\text{WEC}_l(x_i)}{\text{WEC}_l(x_i) - \text{WEC}_l(x_i)} \]
 \[= x_{\text{ext}} - x_i \]

\[\alpha \text{-Clipping: algorithm} \]
alphaClip(\(p_1, p_2, \text{window} \))
- Determine window-edge-coordinates of \(p_1, p_2 \)
- Determine outcodes Oc(p1), Oc(p2)
- Handle trivial accept and reject
 \(\alpha_1 = 0 \); // line parameter for first point
 \(\alpha_2 = 1 \); // line parameter for second point
- ...

\[\alpha \text{-Clipping: example for clipping } p_1 \]

Similarly clip \(p_1 \) against other edges

...
Line Clipping

\(\alpha \)-Clipping: algorithm (cont.)

```c
// now clip point p2 against all edges
if( OC(p2) & LEFT_FLAG ) {
    \( \alpha = \text{WEC}_L(p2)/(\text{WEC}_L(p1) - \text{WEC}_L(p2)) \)
    \( \alpha^2 = \min(\alpha^2, \alpha) \)
}
```

Similarly clip p1 against other edges

```c
...
```

Line Clipping

Example

```
\( t*p1 + (1-t)*p2 \)
\( t = \text{clip}(p1, p2) \)
```

\(p1 \) \(p2 \)
\(\text{Start configuration} \) \(\text{After clipping } p1 \) \(\text{After clipping } p2 \)

Line Clipping

Another Example

```
\( t*p1 + (1-t)*p2 \)
\( t = \text{clip}(p1, p2) \)
```

\(p1 \) \(p2 \)
\(\text{Start configuration} \) \(\text{After clipping } p1 \) \(\text{After clipping } p2 \)

Line Clipping in 3D

Approach:
- Clip against parallelepiped in NDC (after perspective transform)
- Means that the clipping volume is always the same!
 - OpenGL: \(x_{\text{min}} - x_{\text{max}} = -1, x_{\text{max}} - x_{\text{min}} = 1 \)
- Boundary lines become boundary planes
 - But outcodes and WECs still work the same way
- Additional front and back clipping plane
 - \(z_{\text{min}} = 0, z_{\text{max}} = -1 \) in OpenGL

Line Clipping

Extensions
- Algorithm can be extended to clipping lines against
 - Arbitrary convex polygons (2D)
 - Arbitrary convex polytopes (3D)
Line Clipping

Non-convex clipping regions
- E.g.: windows in a window system!

Polygon Clipping

Objective
- 2D: clip polygon against rectangular window
 - Or general convex polygons
 - Extensions for non-convex or general polygons
- 3D: clip polygon against parallelepiped

Polygon Clipping

Not just clipping all boundary lines
- May have to introduce new line segments

Polygon Clipping

Classes of Polygons
- Triangles
- Convex
- Concave
- Holes and self-intersection

Polygon Clipping

Sutherland/Hodgeman Algorithm (’74)
- Arbitrary convex or concave object polygon
 - Restriction to triangles does not simplify things
- Convex subject polygon (window)
Polygons Clipping

Sutherland-Hodgemann Algorithm (’74)
- Approach: clip object polygon independently against all edges of subject polygon

```java
Clipping against one edge:
clipPolygonToEdge(p[n], edge) {
    for(i = 0; i < n; i++) {
        if(p[i] inside edge) {
            if(p[i-1] inside edge) // p[-1] = p[n-1]
                output p[i];
            else {
                p = intersect(p[i-1], p[i], edge);
                output p, p[i];
            }
        } else ... 
    }
} // end of algorithm
```

Clipping against one edge (cont)

- p[i] inside: 2 cases
 - p[i-1]
 - p[i]

```
Output: p[i]  Output: p, p[i]
```

- p[i] outside: 2 cases
 - p[i-1]
 - p[i]

```
Output: p  Output: nothing
```

Example

- inside
- outside
Polygon Clipping

Sutherland/Hodgeman Algorithm
- Discussion:
 - Works for concave polygons
 - But generates degenerate cases
- Clipping against individual edges independent
 - Great for hardware (pipelining)
 - All vertices required in memory at the same time
 - Not so good, but unavoidable
 - Another reason for using triangles only in hardware rendering

Other Polygon Clipping Algorithms
- Weller/Aehlert 77:
 - Arbitrary concave polygons with holes both as subject and as object polygon
- Vatti '92:
 - Self intersection allowed as well
- ... many more
 - Improved handling of degenerate cases
 - But not often used in practice due to high complexity

Coming Up:
Friday
- More clipping, hidden surface removal