Perspective Projection

Wolfgang Heldrich

Course News

Assignment 1
- Due February 2

Homework 1
- Discussed in labs this week

Homework 2
- Exercise problems for perspective
- Discussed in labs next week

Reading
- Chapter 6

Recap: Transformation Hierarchies

Hierarchical Modeling

Advantages
- Define object once, instantiate multiple copies
- Transformation parameters often good control knobs
- Maintain structural constraints if well-designed

Limitations
- Expressivity: not always the best controls
- Can’t do closed kinematic chains
 - *Keep hand on hip*

Display Lists

Concept:
- If multiple copies of an object are required, it can be compiled into a display list:
 - `glNewList(listId, GL_COMPILE);`
 - `glBegin(...);`
 - `... // geometry goes here`
 - `glEndList();`
 - // render two copies of geometry offset by 1 in z-direction:
 - `glCallList(listId);`
 - `glTranslatef(0.0, 0.0, 1.0);`
 - `glCallList(listId);`

Advantages:
- More efficient than individual function calls for every vertex/attribute
- Can be cached on the graphics board (bandwidth)
- Display lists exist across multiple frames
 - *Represent static objects in an interactive application*
Shared Vertices

Triangle Meshes
- Multiple triangles share vertices
- If individual triangles are sent to graphics board, every vertex is sent and transformed multiple times
 - **Computational expense**
 - **Bandwidth**

Triangle Strips

Idea:
- Encode neighboring triangles that share vertices
- Use an encoding that requires only a constant-sized part of the whole geometry to determine a single triangle
- N triangles need n+2 vertices

Triangle Strips

Orientation:
- Strip starts with a counter-clockwise triangle
- Then alternates between clockwise and counter-clockwise

Triangle Fans

Similar concept:
- All triangles share on center vertex
- All other vertices are specified in CCW order

Triangle Strips and Fans

Transformations:
- n+2 for n triangles
- Only requires 3 vertices to be stored according to simple access scheme
- Ideal for pipeline (local knowledge)

Generation
- E.g. from directed edge data structure
- Optimize for longest strips/fans

Vertex Arrays

Concept:
- Store array of vertex data for meshes with arbitrary connectivity (topology)
- `GLfloat *points[3*nvertices];`
- `GLfloat *colors[3*nvertices];`
- `GLuint *tris[nvertices] =` `{0, 1, 3, 2, 4, ...};`
- `glVertexPointer(..., points);`
- `glColorPointer(..., colors);`
- `glDrawElements(GL_TRIANGLES,...,tris);`
Vertex Arrays

Benefits:
- Ideally, vertex array fits into memory on GPU
- Then all vertices are transformed exactly once

In practice:
- Graphics memory may not be sufficient to hold model
- Then either:
 - Cache only parts of the vertex array on board (may lead to cache thrashing!)
 - Transform everything in software and just send results for individual triangles (bandwidth problem: multiple transfers of same vertex)

Projective Rendering Pipeline

Object world viewing device

Scene graph

Object geometry Modelling Transforms

Viewing Transform

Projection Transform

Result: all vertices of scene in shared 3D world coordinate system

Rendering Pipeline

Object world viewing device

Scene graph Object geometry

Modelling Transform

Viewing Transform

Projection Transform

Result: scene vertices in 3D view (camera) coordinate system
Rendering Pipeline

- Scene graph
 - Object geometry
 - Modelling
 - Transforms
 - Viewing
 - Transform

- Projection Transform

Perspective Transformation

- **Pinhole Camera**:
 - Light shining through a tiny hole into a dark room yields upside-down image on wall

Real Cameras

- Pinhole camera has small aperture (lens opening)
 - hard to get enough light to expose the film

- real pinhole camera

- Lens permits larger apertures
- Lens permits changing distance to film plane without actually moving the film plane

- camera

- price to pay: limited depth of field

Real Cameras - Depth of Field

- **Limited depth of field**
 - Can be used to direct attention
 - Artistic purposes

Perspective Transformation

- In computer graphics:
 - Image plane is conceptually in front of the center of projection

- Perspective transformations belong to a class of operations that are called projective transformations
- Linear and affine transformations also belong to this class
- All projective transformations can be expressed as 4x4 matrix operations
Perspective Projection

- **Synopsis:**
 - Project all geometry through a common center of projection (eye point) onto an image plane.

```
            x
            |
            |
            |
            y
            |
            z
```

Perspective Projection

- **Analysis:**
 - This is a special case of a general family of transformations called projective transformations.
 - These can be expressed as 4x4 homogeneous matrices!
 - E.g. in the example:
 \[
 T = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix} T \begin{bmatrix}
 x \\
 y \\
 z \\
 1 \\
 \end{bmatrix} = \begin{bmatrix}
 x/z \\
 y/z \\
 -1 \\
 1 \\
 \end{bmatrix}
 \]

Projective Transformations

- **Convention:**
 - Viewing frustum is mapped to a specific parallelepiped.
 - Normalized Device Coordinates (NDC)
 - Only objects inside the parallelepiped get rendered.
 - Which parallelepiped is used depends on the rendering system.
 - OpenGL:
 - Left and right image boundary are mapped to \(x=\pm 1\) and \(x=-1\).
 - Top and bottom are mapped to \(y=\pm 1\) and \(y=1\).
 - Near and far plane are mapped to \(z=\pm 1\) and \(z=1\).
Projective Transformations

- **Why near and far plane?**
 - Near plane:
 - Avoid singularity (division by zero, or very small numbers)
 - Far plane:
 - Store depth in fixed-point representation (integer), thus have finite range of values (0...1)
 - Avoid/reduce numerical precision artifacts for distant objects

- **Alternative specification of symmetric frusta**
 - Field-of-view (fov) α
 - Frv/f
 - Field-of-view in y-direction (α_y) + aspect ratio

- **Properties:**
 - All transformations that can be expressed as homogeneous 4x4 matrices (in 3D)
 - 16 matrix entries, but multiples of the same matrix all describe the same transformation
 - 15 degrees of freedom
 - The mapping of 5 points uniquely determines the transformation

- **Determining the matrix representation**
 - Need to observe 5 points in general position, e.g.
 - $[\text{left},0,0,1]^T \rightarrow [1,0,0,1]^T$
 - $[0,\text{top},0,1]^T \rightarrow [0,1,0,1]^T$
 - $[0,0,-\text{left},1]^T \rightarrow [0,0,1,1]^T$
 - $[0,0,-\text{top},1]^T \rightarrow [0,0,0,1]^T$
 - $[\text{left}^*\text{top}^*,0,-\text{left},1]^T \rightarrow [1,1,1,1]^T$
 - Solve resulting equation system to obtain matrix

Demos

- Tuebingen applets from Frank Hanisch
 - http://www.gits.uni-tuebingen.de/project/sgrid/doc/heitke/sketch/
 - [Applet/index.html](http://www.gits.uni-tuebingen.de/project/sgrid/doc/heitke/sketch/Applet/index.html)
Perspective Derivation

\[
\begin{bmatrix}
\begin{array}{c}
x' \\
y' \\
z'
\end{array}
\end{bmatrix} =
\begin{bmatrix}
E & 0 & 0 & x \\
0 & F & 0 & y \\
0 & 0 & C & z \\
0 & 0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]

- \(x' = E \cdot x \) left \(\rightarrow x' / w' = 1 \)
- \(y' = F \cdot y \) right \(\rightarrow y' / w' = -1 \)
- \(z' = C \cdot z \) top \(\rightarrow z' / w' = 1 \)
- \(w' = -z \) bottom \(\rightarrow y' / w' = -1 \)
- \(z = \text{near} \rightarrow z' / w' = 1 \)
- \(z = \text{far} \rightarrow z' / w' = -1 \)

\[
y' = F_y + B_z, \quad \frac{y'}{w'} = \frac{F_y + B_z}{w'}, \quad 1 = F_y + B_z
\]

\[
1 = F \cdot \frac{z}{-z}, \quad 1 = F \cdot \frac{-z}{-z}, \quad 1 = F \cdot \frac{z}{-z}, \quad 1 = F \cdot \frac{-z}{-z}
\]

Perspective Example

- **view volume**
 - \(\text{left} = -1 \), \(\text{right} = 1 \)
 - \(\text{bot} = -1 \), \(\text{top} = 1 \)
 - \(\text{near} = 1 \), \(\text{far} = 4 \)

\[
\begin{bmatrix}
2n & 0 & r+l & 0 \\
r-l & 2n & r+l & 0 \\
0 & t-b & 0 & 0 \\
0 & 0 & -f+n & -2fn
\end{bmatrix}
\begin{align}
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix}
\end{align}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -5/3 & -8/3 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

Orthographic Camera Projection

- Camera’s back plane parallel to lens
- Infinite focal length
- No perspective convergence
- Just throw away \(z \) values

\[
\begin{bmatrix}
y' \\
z'
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]

Projective Transformations

- **Properties**
 - Lines are mapped to lines and triangles to triangles
 - Parallel lines do NOT remain parallel
 - E.g., rails vanishing at infinity
 - Affine combinations are NOT preserved
 - E.g., center of a line does not map to center of projected line (perspective foreshortening)

Projection Taxonomy
Perspective Projections
- classified by vanishing points

Axonometric Projections
- projectors perpendicular to image plane

View Volumes
- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test

View Volume
- Convention
 - Viewing frustum mapped to specific parallelepiped
 - Normalized Device Coordinates (NDC)
 - Same as clipping coords
 - Only objects inside the parallelepiped get rendered
 - Which parallelepiped?
 - Depends on rendering system

Perspective Matrices in OpenGL
- Perspective Matrices:
 - glFrustum(left, right, bottom, top, near, far)
 - Specifies perspective xform (near, far are always positive)
 - glOrtho(left, right, bottom, top, near, far)

Convenience Functions:
- gluPerspective(fovy, aspect, near, far)
 - Another way to do perspective
- gluLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)
 - Useful for viewing transform

Projective Rendering Pipeline
- object space
- world space
- viewing space
- clipped space
Window-To-Viewport Transformation

- **Generate pixel coordinates**
 - Map x, y from range $-1...1$ (normalized device coordinates) to pixel coordinates on the screen.
 - Map z from $-1...1$ to $0...1$ (used later for visibility).
 - Involves 2D scaling and translation.

Coming Up:

- **Wednesday:**
 - More on perspective projection

- **Friday/Next Week**
 - Lighting/shading