Affine Transformations & Homogeneous Coordinates

Wolfgang Heidrich

The Rendering Pipeline

Geometry Database

Geometry Processing

Model/View Transform Lighting Perspective Transform Clipping

Scan Conversion Texturing Depth Test Blending Framebuffer

Recap: Modeling and Viewing Transformation

Affine transformations

- Linear transformations + translations
- Can be expressed as a 3x3 matrix + 3 vector

\[x' = M \cdot x + t \]

Recap: Compositing of Affine Transformations

In general:

- Transformation of geometry into coordinate system where operation becomes simpler
- Perform operation
- Transform geometry back to original coordinate system

Example: 2D rotation around arbitrary center

Consider this transformation

\[x' = \text{Id} \cdot \left(R(\phi) \cdot \left(\text{Id} \cdot x - \text{t} \right) \right) + \text{t} \]

\[\text{translate by } -\text{t} \]

\[\text{translate by } \text{t} \]

i.e.

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
 \cos \phi & -\sin \phi \\
 \sin \phi & \cos \phi
\end{pmatrix}
\begin{pmatrix}
 1 & 0 & a \\
 0 & 1 & b
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
+ \begin{pmatrix}
 a \\
 b
\end{pmatrix}
\]
Our composite example is a rotation around an arbitrary 2D point with position $t!$
Recap: Compositing of Affine Transformations

Second interpretation:
- Step 1: translate frame (move origin to object)

Recap: Compositing of Affine Transformations

Second interpretation:
- Step 2: rotate frame by Φ (inverse of rot. by Φ)

Recap: Compositing of Affine Transformations

Second interpretation:
- Step 3: translate frame back (vector t in new frame!)

Recap: Compositing of Affine Transformations

Notes:
- All transformations are always with respect to the current coordinate frame.
- The results of both interpretations are identical.
 - Note that the object has the same relative position and orientation with respect to the coordinate frame.

Compositing of Affine Transformations

Another Example: 3D rotation around arbitrary axis
- Rotate axis to z-axis
- Rotate by ϕ around z-axis
- Rotate z-axis back to original axis

Composite transformation:

$$R(v, \phi) = R_x^{-1}(\alpha) \cdot R_z^{-1}(\beta) \cdot R_z(\phi) \cdot R_z(\beta) \cdot R_x(\alpha)$$

$$= (R_z(\beta) \cdot R_x(\alpha))^{-1} \cdot R_z(\phi) \cdot (R_z(\beta) \cdot R_x(\alpha))$$

Compositing of Affine Transformations

Yet another example (on whiteboard):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
Properties of Affine Transformations

Definition:
- A linear combination of points or vectors is given as
 \[x = \sum_{j=1}^{n} \alpha_j \cdot x_j, \text{ for } \alpha_j \in \mathbb{R} \]
- An affine combination of points or vectors is given as
 \[x = \sum_{j=1}^{n} \beta_j \cdot x_j, \text{ with } \sum_{j=1}^{n} \beta_j = 1 \]

Properties of Affine Transformations

Example:
- Affine combination of 2 points
 \[x = \alpha_1 \cdot x_1 + \alpha_2 \cdot x_2, \text{ with } \alpha_1 + \alpha_2 = 1 \]
 \[= (1 - \alpha_2) \cdot x_1 + \alpha_2 \cdot x_2 \]
 \[= x_1 + \alpha_2 \cdot (x_2 - x_1) \]

Properties of Affine Transformations

Definition:
- A convex combination is an affine combination where all the weights \(\alpha_j \) are positive
- Note: this implies \(0 \leq \alpha_j \leq 1, \text{ } j = 1 \ldots n \)

Properties of Affine Transformations

Example:
- Convex combination of 3 points
 \[x = \alpha \cdot x_1 + \beta \cdot x_2 + \gamma \cdot x_3 \]
 \[\text{with } \alpha + \beta + \gamma = 1, \text{ } 0 \leq \alpha, \beta, \gamma \leq 1 \]
- \(\alpha, \beta, \text{ and } \gamma \) are called Barycentric coordinates

Properties of Affine Transformations

Theorem:
- The following statements are synonymous
 - A transformation \(T(x) \) is affine, i.e.:
 \[x' = T(x) = M \cdot x + t, \]
 \[\text{for some matrix } M \text{ and vector } t \]
 - \(T(x) \) preserves affine combinations, i.e.
 \[T(\sum_{j=1}^{n} \alpha_j \cdot x_j) = \sum_{j=1}^{n} \alpha_j \cdot T(x_j), \text{ for } \sum_{j=1}^{n} \alpha_j = 1 \]
 - \(T(x) \) maps parallel lines to parallel lines

Properties of Affine Transformations

Preservation of affine combinations:
- Can compute transformation of every point on line or triangle by simply transforming the control points
Homogeneous Coordinates

Homogeneous representation of points:
- Add an additional component \(w = 1 \) to all points
- All multiples of this vector are considered to represent the same 3D point
- Use square brackets (rather than round ones) to denote homogeneous coordinates (different from text book!)

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{pmatrix} =
\begin{pmatrix}
 m_{11} & m_{12} & m_{13} & 0 \\
 m_{21} & m_{22} & m_{23} & 0 \\
 m_{31} & m_{32} & m_{33} & 0 \\
 1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 w
\end{pmatrix}
\]

Geometrically In 2D

Cartesian Coordinates:

![Cartesian Coordinates](image)

Geometrically In 2D

Homogeneous Coordinates:

\[
\begin{pmatrix}
 x' \\
 y' \\
 w
\end{pmatrix} =
\begin{pmatrix}
 m_{11} & m_{12} & m_{13} & 0 \\
 m_{21} & m_{22} & m_{23} & 0 \\
 m_{31} & m_{32} & m_{33} & 0 \\
 1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

Homogeneous Matrices

Combining the two matrices into one:

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} =
\begin{pmatrix}
 m_{11} & m_{12} & m_{13} & f_x \\
 m_{21} & m_{22} & m_{23} & f_y \\
 m_{31} & m_{32} & m_{33} & f_z
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

Homogeneous Matrices – Composite Transformations

Example: 2D rotation around arbitrary center

- This:

\[
x' = \text{Id} \cdot (R(\phi) \cdot (\text{Id} \cdot x - t)) + t
\]

- translate by \(t \)

- \(\text{Id} \cdot \) rotate by \(\phi \)

- translates by \(t \)

- Corresponds to this in full expansion:

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix} 1 & \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi & 0 \end{pmatrix} \begin{pmatrix} 1 & x - a \\ y - b & 1 \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}
\]
Homogeneous Coordinates – Composite Transformations

Example: 2D rotation around arbitrary center

- Euclidean coordinates:
 \[
 \begin{pmatrix}
 x' \\
 y'
 \end{pmatrix} = \begin{pmatrix}
 1 & \cos \phi & -\sin \phi \\
 0 & \sin \phi & \cos \phi
 \end{pmatrix} \begin{pmatrix}
 1 & x & a \\
 0 & y & b
 \end{pmatrix} + \begin{pmatrix}
 a \\
 b
 \end{pmatrix}
 \]

- Homogeneous coordinates:
 \[
 \begin{pmatrix}
 x' \\
 y' \\
 1
 \end{pmatrix} = \begin{pmatrix}
 1 & a & 0 & 0 \\
 0 & b & 0 & 0 \\
 0 & 0 & 1 & 1
 \end{pmatrix} \begin{pmatrix}
 1 & x & a & 0 \\
 0 & y & b & 0 \\
 0 & 0 & 1 & 1
 \end{pmatrix}
 \]

Homogeneous Matrices

Note:
- Multiplication of the matrix with a constant does not change the transformation?

```
\begin{pmatrix}
  x' \\
  y' \\
  z'
  \end{pmatrix} = \begin{pmatrix}
  m_{11} & m_{21} & m_{31} & t_x \\
  m_{12} & m_{22} & m_{32} & t_y \\
  m_{13} & m_{23} & m_{33} & t_z \\
  0 & 0 & 0 & 1
  \end{pmatrix} \begin{pmatrix}
  x \\
  y \\
  z \\
  1
  \end{pmatrix}
  \]

Homogeneous Vectors

**Representing vectors in homogeneous coordinates**
- Need representation that is only affected by linear transformations, but not by translations.
- This is achieved by setting \( w = 0 \)

```
\begin{pmatrix}
 x \\
 y \\
 z \\
 w
 \end{pmatrix} = \begin{pmatrix}
 m_{11} & m_{12} & m_{13} & t_x \\
 m_{21} & m_{22} & m_{23} & t_y \\
 m_{31} & m_{32} & m_{33} & t_z \\
 0 & 0 & 0 & 1
 \end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z \\
 w
 \end{pmatrix}
 \]

Homogeneous Vectors

Earlier discussion describes points only
- What about vectors (directions)?
- What is the affine transformation of a vector?
 - Rotation
 - Scaling
 - Translation

Vectors are invariant under translation!

Homogeneous Vectors

Properties
- Unified representation as 4-vector (in 3D) for:
 - Points
 - Vectors / directions
- Affine transformations become 4x4 matrices
 - Composing multiple affine transformations involves simply multiplying the matrices
 - 3D affine transformations have 12 degrees of freedom
 - Need mapping of 4 points to uniquely define transformation

Homogeneous Coordinates

Notes:
- A composite transformation is now just the product of a few matrices.
- Rather than multiply each point sequentially with 3 matrices, first multiply the matrices, then multiply each point with only one (composite) matrix.
 - Much faster for large # of points!
- The composite matrix describing the affine transformation always has the bottom row \(0,0,1 \) (2D), or \(0,0,0,1 \) (3D)
The Rendering Pipeline

Geometry Processing
- Geometry Database
- Model/View Transform.
- Lighting
- Perspective Transform.
- Clipping

Scanning
- Texturing
- Depth Test
- Blending
- Framebuffer

Modeling Transformation

Purpose:
- Map geometry from local object coordinate system into a global world coordinate system
- Same as placing objects

Transformations:
- Arbitrary affine transformations are possible
 - Even more complex transformations may be desirable, but are not available in hardware
 - Freeform deformations

Viewing Transformation

Purpose:
- Map geometry from world coordinate system into camera coordinate system
- Camera coordinate system is right-handed, viewing direction is negative z-axis
- Same as placing camera

Transformations:
- Usually only rigid body transformations
 - Rotations and translations
- Objects have same size and shape in camera and world coordinates

Model/View Transformation

Combine modeling and viewing transform.
- Combine both into a single matrix
- Saves computation time if many points are to be transformed
- Possible because the viewing transformation directly follows the modeling transformation without intermediate operations