
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2008

Alla Sheffer

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008

Advanced Rendering
Week 8, Wed Mar 5

2

Ray-Triangle Intersection
• method in book is elegant but a bit complex
• easier approach: triangle is just a polygon

• intersect ray with plane

• check if ray inside triangle

!

normal : n = (b" a) # (c " a)

ray : x = e +td

plane : (p" x) $n = 0% x =
p $n

n

p $n

n
= e +td% t = "

(e "p) $n

d $n

p is a or b or c

a

b

c

e

d

x

n

3

Ray-Triangle Intersection
• check if ray inside triangle

• check if point counterclockwise from each edge (to
its left)

• check if cross product points in same direction as
normal (i.e. if dot is positive)

• more details at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf!

(b" a) # (x " a) $n % 0

(c "b) # (x "b) $n % 0

(a " c) # (x " c) $n % 0
a

b

c

x

n

CCW

4

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

5

Geometric Transformations
• similar goal as in rendering pipeline:

• modeling scenes more convenient using different
coordinate systems for individual objects

• problem
• not all object representations are easy to transform

• problem is fixed in rendering pipeline by restriction to
polygons, which are affine invariant

• ray tracing has different solution
• ray itself is always affine invariant
• thus: transform ray into object coordinates!

6

Geometric Transformations
• ray transformation

• for intersection test, it is only important that ray is in
same coordinate system as object representation

• transform all rays into object coordinates
• transform camera point and ray direction by inverse of

model/view matrix
• shading has to be done in world coordinates (where

light sources are given)
• transform object space intersection point to world

coordinates
• thus have to keep both world and object-space ray

7

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

8

Local Lighting

• local surface information (normal…)
• for implicit surfaces F(x,y,z)=0: normal n(x,y,z)

can be easily computed at every intersection
point using the gradient

• example:

!
!
!

"

#

$
$
$

%

&

''

''

''

=

zzyxF

yzyxF

xzyxF

zyx

/),,(

/),,(

/),,(

),,(n

2222),,(rzyxzyxF !++=

!
!
!

"

#

$
$
$

%

&

=

z

y

x

zyx

2

2

2

),,(n needs to be normalized!needs to be normalized!

9

Local Lighting
• local surface information

• alternatively: can interpolate per-vertex
information for triangles/meshes as in
rendering pipeline
• now easy to use Phong shading!

• as discussed for rendering pipeline
• difference with rendering pipeline:

• interpolation cannot be done incrementally
• have to compute barycentric coordinates for

every intersection point (e.g plane equation for
triangles)

10

Global Shadows

• approach
• to test whether point is in shadow, send out

shadow rays to all light sources
• if ray hits another object, the point lies in

shadow

11

Global Reflections/Refractions
• approach

• send rays out in reflected and refracted direction to
gather incoming light

• that light is multiplied by local surface color and
added to result of local shading

12

Advanced Phenomena

• Can (not allways efficiently) simulate
• Soft Shadows
• Fog
• Frequency Dependent Light (diamonds &

prisms)
• Barely handle S*DS*

• S – Specular
• D - diffuse

13

Total Internal Reflection

http://www.physicsclassroom.com/Class/refrn/U14L3b.html 14

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

15

Optimized Ray-Tracing
• basic algorithm simple but very expensive
• optimize by reducing:

• number of rays traced
• number of ray-object intersection calculations

• methods
• bounding volumes: boxes, spheres
• spatial subdivision

• uniform
• BSP trees

• (more on this later with collision)

16

Example Images

17

Radiosity
• radiosity definition

• rate at which energy emitted or reflected by a surface
• radiosity methods

• capture diffuse-diffuse bouncing of light
• indirect effects difficult to handle with raytracing

18

Radiosity
• illumination as radiative heat transfer

• conserve light energy in a volume
• model light transport as packet flow until convergence
• solution captures diffuse-diffuse bouncing of light

• view-independent technique
• calculate solution for entire scene offline
• browse from any viewpoint in realtime

heat/light source

thermometer/eye

reflective objects

energy
packets

19

Radiosity

[IBM][IBM]

• divide surfaces into small patches
• loop: check for light exchange between all pairs

• form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/continuous.jpgescience.anu.edu.au/lecture/cg/GlobalIllumination/Image/discrete.jpg
20

Better Global Illumination
• ray-tracing: great specular, approx. diffuse

• view dependent
• radiosity: great diffuse, specular ignored

• view independent, mostly-enclosed volumes
• photon mapping: superset of raytracing and radiosity

• view dependent, handles both diffuse and specular well
raytracing photon mapping

graphics.ucsd.edu/~henrik/images/cbox.html

21

Subsurface Scattering: Translucency

• light enters and leaves at different locations
on the surface
• bounces around inside

• technical Academy Award, 2003
• Jensen, Marschner, Hanrahan

22

Subsurface Scattering: Marble

23

Subsurface Scattering: Milk vs. Paint

24

Subsurface Scattering: Skin

25

Subsurface Scattering: Skin

26

Non-Photorealistic Rendering
• simulate look of hand-drawn sketches or

paintings, using digital models

www.red3d.com/cwr/npr/
27

Non-Photorealistic Shading
• cool-to-warm shading

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

standard cool-to-warm with edges/creases

28

Non-Photorealistic Shading
• draw silhouettes: if , e=edge-eye vector
• draw creases: if

!

(e "n0)(e "n1) # 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

(n
0
"n

1
) # threshold

standard cool-to-warm with edges/creases

29

Image-Based Modelling and Rendering
• store and access only pixels

• no geometry, no light simulation, ...
• input: set of images
• output: image from new viewpoint

• surprisingly large set of possible new viewpoints
• interpolation allows translation, not just rotation

• lightfield, lumigraph: translate outside convex hull of object
• QuickTimeVR: camera rotates, no translation

• can point camera in or out

