
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2008

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008

Lighting/Shading IV
Advanced Rendering I

Week 8, Mon Mar 3

2

Midterm
• for all homeworks+exams

• good to use fractions/trig functions as
intermediate values to show work

• but final answer should be decimal number
• allowed during midterm

• calculator
• one notes page, 8.5”x11”, one side of page

• your name at top, hand in with midterm, will be
handed back

• must be handwritten

3

Midterm
• topics covered: through rasterization (H2)

• rendering pipeline
• transforms
• viewing/projection
• rasterization

• topics NOT covered
• color, lighting/shading (from 2/15 onwards)

• H2 handed back, with solutions, on Wed

4

FCG Reading For Midterm

• Ch 1
• Ch 2 Misc Math (except for 2.5.1, 2.5.3,

2.7.1, 2.7.3, 2.8, 2.9)
• Ch 5 Linear Algebra (only 5.1-5.2.2, 5.2.5)
• Ch 6 Transformation Matrices (except 6.1.6)
• Sect 13.3 Scene Graphs
• Ch 7 Viewing
• Ch 3 Raster Algorithms (except 3.2-3.4, 3.8)

5

Red Book Reading For Midterm

• Ch Introduction to OpenGL
• Ch State Management and Drawing

Geometric Objects
• App Basics of GLUT (Aux in v 1.1)
• Ch Viewing
• App Homogeneous Coordinates and

Transformation Matrices
• Ch Display Lists

6

Review: Reflection Equations

2 (N (N · L)) – L = R

!

Ispecular = ksIlight (v•r)
n
shiny

ll

nn
vvhh

!

Ispecular = ksIlight (h•n)
n
shiny

h = (l + v) /2

• Phong specular model

• or Blinn-Phong specular model

7

Review: Reflection Equations

full Phong lighting model
• combine ambient, diffuse, specular components

• don’t forget to normalize all vectors: n,l,r,v,h
• n: normal to surface at point
• l: vector between light and point on surface
• r: mirror reflection (of light) vector
• v: vector between viewpoint and point on surface
• h: halfway vector (between light and viewpoint)

!

I
total

= k
a
I
ambient

+ I
i
(

i=1

lights

" k
d
(n• l

i
) + k

s
(v•r

i
)
n
shiny)

!

(h•n)or

8

Review: Lighting

• lighting models
• ambient

• normals don’t matter
• Lambert/diffuse

• angle between surface normal and light
• Phong/specular

• surface normal, light, and viewpoint

9

Review: Shading Models
• flat shading

• compute Phong lighting once for entire
polygon

• Gouraud shading
• compute Phong lighting at the vertices and

interpolate lighting values across polygon

10

Shading

11

Gouraud Shading Artifacts

• perspective transformations
• affine combinations only invariant under affine,

not under perspective transformations
• thus, perspective projection alters the linear

interpolation!

Z – into the scene

Image
plane

12

Gouraud Shading Artifacts
• perspective transformation problem
• colors slightly “swim” on the surface as objects

move relative to the camera
• usually ignored since often only small

difference
• usually smaller than changes from lighting

variations
• to do it right

• either shading in object space
• or correction for perspective foreshortening
• expensive – thus hardly ever done for colors

13

Phong Shading

• linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel
• same input as Gouraud shading
• pro: much smoother results
• con: considerably more expensive

• not the same as Phong lighting
• common confusion
• Phong lighting: empirical model to calculate

illumination at a point on a surface

14

Phong Shading

• linearly interpolate the vertex normals
• compute lighting equations at each pixel
• can use specular component

N1

N2

N3

N4

!

Itotal = kaIambient + Ii kd n " li() + ks v " ri()
nshiny()

i=1

lights

#
remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

15

Phong Shading Difficulties

• computationally expensive
• per-pixel vector normalization and lighting

computation!
• floating point operations required

• lighting after perspective projection
• messes up the angles between vectors
• have to keep eye-space vectors around

• no direct support in pipeline hardware
• but can be simulated with texture mapping

16

Gouraud Phong

Shading Artifacts: Silhouettes

• polygonal silhouettes remain

17

A

D

C

B

Interpolate between
AB and AD

ι

B

A

D

C

Interpolate between
CD and AD

Rotate -90o

and color
same point

Shading Artifacts: Orientation
• interpolation dependent on polygon orientation

• view dependence!

18

B

A

C

vertex B shared by two rectangles
on the right, but not by the one on
the left

E

D

F

H

G
first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

Shading Artifacts: Shared Vertices

19

Shading Models Summary
• flat shading

• compute Phong lighting once for entire
polygon

• Gouraud shading
• compute Phong lighting at the vertices and

interpolate lighting values across polygon
• Phong shading

• compute averaged vertex normals
• interpolate normals across polygon and

perform Phong lighting across polygon

20

Shutterbug: Flat Shading

21

Shutterbug: Gouraud Shading

22

Shutterbug: Phong Shading

23

Computing Normals
• per-vertex normals by interpolating per-facet

normals
• OpenGL supports both

• computing normal for a polygon

c

b

a

24

Computing Normals
• per-vertex normals by interpolating per-facet

normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors

c

b

a

c-b
a-b

25

Computing Normals
• per-vertex normals by interpolating per-facet

normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors
• cross: normal of plane

gives direction
• normalize to unit length!

• which side is up?
• convention: points in

counterclockwise
order

c

b

a

c-b
a-b

(a-b) x (c-b)

26

Specifying Normals
• OpenGL state machine

• uses last normal specified
• if no normals specified, assumes all identical

• per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

• per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

• normal interpreted as direction from vertex location
• can automatically normalize (computational cost)

glEnable(GL_NORMALIZE);

27

Advanced Rendering

28

Global Illumination Models
• simple lighting/shading methods simulate

local illumination models
• no object-object interaction

• global illumination models
• more realism, more computation
• leaving the pipeline for these two lectures!

• approaches
• ray tracing
• radiosity
• photon mapping
• subsurface scattering

29

Ray Tracing

• simple basic algorithm
• well-suited for software rendering
• flexible, easy to incorporate new effects

• Turner Whitted, 1990

30

Simple Ray Tracing

• view dependent method
• cast a ray from viewer’s

eye through each pixel
• compute intersection of

ray with first object in
scene

• cast ray from
intersection point on
object to light sources

projection
reference
point

pixel positions
on projection
plane

31

Reflection
• mirror effects

• perfect specular reflection

n

!

"

!

"

32

Refraction
• happens at interface

between transparent object
and surrounding medium
• e.g. glass/air boundary

• Snell’s Law
•
• light ray bends based on

refractive indices c1, c2

nd

t!

"
1

!

"
2

!

c
1
sin"

1
= c

2
sin"

2

33

Recursive Ray Tracing
• ray tracing can handle

• reflection (chrome/mirror)
• refraction (glass)
• shadows

• spawn secondary rays
• reflection, refraction

• if another object is hit,
recurse to find its color

• shadow
• cast ray from intersection

point to light source, check
if intersects another object

projection
reference
point

pixel positions
on projection
plane

34

Basic Algorithm

for every pixel pi {
generate ray r from camera position through pixel pi
for every object o in scene {

if (r intersects o)
 compute lighting at intersection point, using local

normal and material properties; store result in pi
else
 pi= background color

}
}

35

Ray Tracing Algorithm

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray

Shadow
Rays

36

Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
 if (Reflect(obj)) then
 reflect_color := RayTrace(ReflectRay(r,obj));
 else
 reflect_color := Black;
 if (Transparent(obj)) then
 refract_color := RayTrace(RefractRay(r,obj));
 else
 refract_color := Black;
 return Shade(reflect_color,refract_color,obj);
end;

37

Algorithm Termination Criteria

• termination criteria
• no intersection
• reach maximal depth

• number of bounces
• contribution of secondary ray attenuated

below threshold
• each reflection/refraction attenuates ray

38

Ray-Tracing Terminology

• terminology:
• primary ray: ray starting at camera
• shadow ray
• reflected/refracted ray
• ray tree: all rays directly or indirectly spawned

off by a single primary ray
• note:

• need to limit maximum depth of ray tree to
ensure termination of ray-tracing process!

39

Ray Trees

www.cs.virginia.edu/~gfx/Courses/2003/Intro.fall.03/slides/lighting_web/lighting.pdf

• all rays directly or indirectly spawned off by a single
primary ray

40

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

41

Ray Generation

• camera coordinate system
• origin: C (camera position)
• viewing direction: v
• up vector: u
• x direction: x= v × u

• note:
• corresponds to viewing

transformation in rendering pipeline
• like gluLookAt

uu

vv

xxCC

42

Ray Generation
• other parameters:

• distance of camera from image plane: d
• image resolution (in pixels): w, h
• left, right, top, bottom boundaries

in image plane: l, r, t, b
• then:

• lower left corner of image:
• pixel at position i, j (i=0..w-1, j=0..h-1):

uxv !+!+!+= bldCO

yx

ux

!"!#!"!+=

!
#

#
!#!

#

#
!+=

yjxiO

h

bt
j

w

lr
iOP ji

11
,

uu

vv
xxCC

43

Ray Generation

• ray in 3D space:

where t= 0…∞

jijiji tCCPtCt ,,,)()(R v!+="!+=

44

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

45

• inner loop of ray-tracing
• must be extremely efficient

• task: given an object o, find ray parameter t, such that Ri,j(t)
is a point on the object

• such a value for t may not exist

• solve a set of equations
• intersection test depends on geometric primitive

• ray-sphere
• ray-triangle
• ray-polygon

Ray - Object Intersections

46

Ray Intersections: Spheres

• spheres at origin
• implicit function

• ray equation

2222:),,(rzyxzyxS =++

!
!
!

"

#

$
$
$

%

&

'+

'+

'+

=

!
!
!

"

#

$
$
$

%

&

'+

!
!
!

"

#

$
$
$

%

&

='+=

zz

yy

xx

z

y

x

z

y

x

jiji

vtc

vtc

vtc

v

v

v

t

c

c

c

tCt ,,)(R v

47

Ray Intersections: Spheres

• to determine intersection:
• insert ray Ri,j(t) into S(x,y,z):

• solve for t (find roots)
• simple quadratic equation

2222)()()(rvtcvtcvtc
zzyyxx

=!++!++!+

48

Ray Intersections: Other Primitives
• implicit functions

• spheres at arbitrary positions
• same thing

• conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)

• same thing (all are quadratic functions!)
• polygons

• first intersect ray with plane
• linear implicit function

• then test whether point is inside or outside of polygon (2D test)
• for convex polygons

• suffices to test whether point in on the correct side of every
boundary edge

• similar to computation of outcodes in line clipping (upcoming)

