
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2008

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008

Lighting/Shading III

Week 7, Fri Feb 29

2

News

• reminder: extra TA office hours in lab 2-4
• so no office hours for me today 2-3

3

Reading for Lighting/Shading

• FCG Chap 9 Surface Shading
• RB Chap Lighting

4

Review: Light Source Placement

• geometry: positions and directions
• standard: world coordinate system

• effect: lights fixed wrt world geometry
• alternative: camera coordinate system

• effect: lights attached to camera (car headlights)

5

Review: Reflectance

• specular: perfect mirror with no scattering
• gloss: mixed, partial specularity
• diffuse: all directions with equal energy

 + + =

 specular + glossy + diffuse =
 reflectance distribution

6

Review: Diffuse Reflection

 Idiffuse = kd Ilight (n • l)
nl

θ

7

• nshiny : purely empirical
constant, varies rate of falloff
• ks: specular coefficient,
highlight color
• no physical basis, works
ok in practice

v

!

Ispecular = ksIlight (cos")
n
shiny

Phong Lighting

• most common lighting model in computer
graphics

• (Phong Bui-Tuong, 1975)

8

Phong Lighting: The nshiny Term

• Phong reflectance term drops off with divergence of viewing angle from
ideal reflected ray

• what does this term control, visually?

Viewing angle – reflected angle

9

Phong Examples

varying l

varying nshiny

10

Calculating Phong Lighting

• compute cosine term of Phong lighting with vectors

• v: unit vector towards viewer/eye
• r: ideal reflectance direction (unit vector)
• ks: specular component

• highlight color
• Ilight: incoming light intensity

• how to efficiently calculate r ?

v

!

Ispecular = ksIlight (v•r)
n
shiny

11

Calculating R Vector
P = N cos θ = projection of L onto N

L
P

N

θ

12

Calculating R Vector
P = N cos θ = projection of L onto N
P = N (N · L)

L
P

N

θ

13

Calculating R Vector
P = N cos θ |L| |N| projection of L onto N
P = N cos θ L, N are unit length
P = N (N · L)

L
P

N

θ

14

Calculating R Vector
P = N cos θ |L| |N| projection of L onto N
P = N cos θ L, N are unit length
P = N (N · L)

2 P = R + L
2 P – L = R
2 (N (N · L)) - L = R L

P

P

R

L

N

θ

15

Phong Lighting Model

• combine ambient, diffuse, specular components

• commonly called Phong lighting
• once per light
• once per color component

• reminder: normalize your vectors when calculating!

))()((
#

1

shiny
lights

i

n
isidiambientatotal
rvklnkIIkI •+•+= !

=

16

Phong Lighting: Intensity Plots

17

Blinn-Phong Model

• variation with better physical interpretation
• Jim Blinn, 1977

• h: halfway vector
• h must also be explicitly normalized: h / |h|
• highlight occurs when h near n

ll

nn
vvhh

!

Iout (x) = k
s
(h•n)

n
shiny • Iin (x);with h = (l + v) /2

18

Light Source Falloff

• quadratic falloff
• brightness of objects depends on power per

unit area that hits the object
• the power per unit area for a point or spot light

decreases quadratically with distance
Area Area 44ππrr22

Area Area 44ππ(2(2r)r)22

19

Light Source Falloff

• non-quadratic falloff
• many systems allow for other falloffs
• allows for faking effect of area light sources
• OpenGL / graphics hardware

• Io: intensity of light source
• x: object point
• r: distance of light from x

!

I
in
(x) =

1

ar
2

+ br + c
" I
0

20

Lighting Review

• lighting models
• ambient

• normals don’t matter
• Lambert/diffuse

• angle between surface normal and light
• Phong/specular

• surface normal, light, and viewpoint

21

Lighting in OpenGL
• light source: amount of RGB light emitted

• value represents percentage of full intensity
e.g., (1.0,0.5,0.5)

• every light source emits ambient, diffuse, and specular
light

• materials: amount of RGB light reflected
• value represents percentage reflected

e.g., (0.0,1.0,0.5)
• interaction: component-wise multiply

• red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

22

Lighting in OpenGL
glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba);
glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba);
glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glEnable(GL_LIGHT0);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);
glMaterialfv(GL_FRONT, GL_SHININESS, n);

• warning: glMaterial is expensive and tricky
• use cheap and simple glColor when possible
• see OpenGL Pitfall #14 from Kilgard’s list
http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

23

Shading

24

Lighting vs. Shading

• lighting
• process of computing the luminous intensity

(i.e., outgoing light) at a particular 3-D point,
usually on a surface

• shading
• the process of assigning colors to pixels

• (why the distinction?)

25

Applying Illumination

• we now have an illumination model for a point
on a surface

• if surface defined as mesh of polygonal facets,
which points should we use?
• fairly expensive calculation
• several possible answers, each with different

implications for visual quality of result

26

Applying Illumination

• polygonal/triangular models
• each facet has a constant surface normal
• if light is directional, diffuse reflectance is

constant across the facet
• why?

27

Flat Shading

• simplest approach calculates illumination at a
single point for each polygon

• obviously inaccurate for smooth surfaces

28

Flat Shading Approximations
• if an object really is faceted, is

this accurate?
• no!

• for point sources, the direction to
light varies across the facet

• for specular reflectance, direction
to eye varies across the facet

29

Improving Flat Shading
• what if evaluate Phong lighting model at each pixel

of the polygon?
• better, but result still clearly faceted

• for smoother-looking surfaces
we introduce vertex normals at each
vertex
• usually different from facet normal
• used only for shading
• think of as a better approximation of the real surface

that the polygons approximate

30

Vertex Normals

• vertex normals may be
• provided with the model
• computed from first principles
• approximated by

averaging the normals
of the facets that
share the vertex

31

Gouraud Shading

• most common approach, and what OpenGL does
• perform Phong lighting at the vertices
• linearly interpolate the resulting colors over faces

• along edges
• along scanlines C1

C2

C3

edge: mix of c1, c2

edge: mix of c1, c3
interior: mix of c1, c2, c3

does this eliminate the facets?

32

Gouraud Shading Artifacts

• often appears dull, chalky
• lacks accurate specular component

• if included, will be averaged over entire
polygon

C1

C2

C3

this interior shading missed!

C1

C2

C3

this vertex shading spread
over too much area

33

Gouraud Shading Artifacts

• Mach bands
• eye enhances discontinuity in first derivative
• very disturbing, especially for highlights

34

Gouraud Shading Artifacts

C1

C2

C3

C4

Discontinuity in rate
of color change

occurs here

• Mach bands

