Tamara Munzner

Color II, Lighting/Shading I
Week 7, Mon Feb 25
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008

- I'm back!
- including office hours Wed/Fri after lecture in lab - this week
- Fri 2/29: Homework 2 due 1 pm sharp

Fri 2/29: Project 2 due 6pm

- extra TA office hours in lab this week to
answer questions
Thu 24 (usual lab 1-2)
- Fri 2-4 (usual lab 12-1)
reminder: midterm next Fri Ma

Review: Trichromacy and Metamers

- three types of cones
- color is combination of cone stimuli
- metamer: identically perceived color caused by very caused by very
different spectra

CIE "Horseshoe" Diagram Facts

Review: Measured vs. CIE Color Spaces

- transformed basis - "imaginary" lights . Y is positive, unit area - Y is luminance, no hue
-

X, Z hue, no luminance

CIE Gamut and λ Chromaticity Diagram

CIE "Horseshoe" Diagram Facts

- all visible colors lie inside the horseshoe - result from color matching experiments - spectral (monochromatic) colors lie around the border
- the straight line between blue and red contains the purple tones
- colors combine linearly (i.e. along lines), since the $x y$-plane is a plane from a linear space
- a point C can be chosen as a white point corresponding to an illuminant
- usually this point is of the curve swept out by the black body radiation spectra for different temperatures
relative to C, two colors are called complementary if they are located along a line segment through C , but on opposite sides (i.e C is an affine combination of the two colors)
- the dominant wavelength of the color is found by extending the line from C through the color to the
edge of the diagram
some colors (i.e. purples) do not have a dominant wavelength, but their complementary color does

RGB Color Space (Color Cube)

define colors with (r, g, b) amounts of red, green, and blue - used by OpenGL

- hardware-centric
- describes the colors that can be generated with specific RGB light sources
- RGB color cube sits within CIE color space
- subset of perceivable colors - scaled, rotated, sheared cube

z

Device Color Gamuts

- use CIE chromaticity diagram to compare the gamuts of various devices
- X, Y, and Z are hypothetical light sources, not used in practice as device primaries

Additive vs. Subtractive Colors

- additive: light
- monitors, LCDs
- RGB model
- subtractive: pigment $\left[\begin{array}{l}Y\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}B \\ B\end{array}\right.$
- printers
- CMY(K) model

HSV Color Space

HSI/HSV and RGB

- HSV/HSI conversion from RGB
- hue same in both
- value is max, intensity is average
$H=\cos ^{-1}\left[\frac{\frac{1}{2}[(R-G)+(R-B)]}{\sqrt{(R-G)^{2}+(R-B)(G-B)}}\right] \begin{aligned} & \text { if }(\mathrm{B}>\mathrm{G}), \\ & \mathrm{H}=360-\mathrm{H}\end{aligned}$
- HSI: $S=1-\frac{\min (R, G, B)}{I} \quad I=\frac{R+G+B}{3}$
-HSV: $S=1-\frac{\min (R, G, B)}{V} \quad V=\max (R, G, B)$

YIQ Color Space

color model used for color TV
Y is luminance (same as CIE)
I \& Q are color (not same I as HSI!)

- using Y backwards compatible for B/W TVs conversion from RGB is linear

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- green is much lighter than red, and red lighter than blue

HSV Does Not Encode Luminance

- luminance

Y of YIQ

- $0.299 \mathrm{R}+0.587 \mathrm{G}+0.114 \mathrm{~B}$
- luminance takes into effect that eye spectral response is wavelengthdependent
value/intensity/brightness - IV/B of HSI/HSV/HSB - $0.333 \mathrm{R}+0.333 \mathrm{G}+0.333 \mathrm{~B}$ - lose information! - Mose incramery

Luminance and Gamma Correction

humans have nonlinear response to brightness

- luminance 18% of X seems half as bright as X
- thus encode luminance nonlinearly: perceptually uniform domain uses bits efficiently
high quality with 8 bits, instead of 14 bits if linear
monitors, sensors, eye all have different reponses
- CRT monitors inverse nonlinear, LCD panels linear
- characterize by gamma
displayedlntensity $=\mathrm{a}^{\gamma}$ (maxintensity)
gamma correction
- displayedlntensity $=\left(a^{1 / \gamma}\right)^{\gamma}$ (maxintensity) $=\mathrm{a}$ (maxintensity) gamma for CRTs around 2.4

RGB Component Color (OpenGL)

- simple model of color using RGB triples
- component-wise multiplication
- (a0, a1, a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

$$
\text { Light } \times \text { object }=\text { color }
$$

 $\stackrel{1}{1,1,0.8}$
\qquad

- why does this work?

- because of light, human vision, color spaces,

Lighting I

Illumination in the Pipeline

- local illumination
- only models light arriving directly from light source
- no interreflections or shadows - can be added through tricks, multiple rendering passes
- light sources
- simple shapes
- materials
simple, non-physical reflection models

Diffuse Interreflection

Ambient Light Sources

- scene lit only with an ambient light source

Projective Rendering Pipeline

Goal

- simulate interaction of light and objects - fast: fake it!
- approximate the look, ignore real physics
- local model: interaction of each object with light
- vs. global model: interaction of objects with each other

Light Sources

- area lights
- light sources with a finite area
- more realistic model of many light sources
- not available with projective rendering pipeline
(i.e., not available with OpenGL)

Light Sources

- ambient lights
- no identifiable source or direction
- hack for replacing true global illumination - (diffuse interreflection: light bouncing off from
other objects)

- types of light sources
directional/parallel lights
- real-life example: sun
infinitely far source: homogeneous coord w=0 - point lights
- same intensity in all directions spot lights
- limited set of directions: - point+direction+cutoff angle

- scene lit with ambient and directional light

Point Light Sources

- scene lit with ambient and point light source

Light Position Important
Viewer Position Important
Surface Angle Important

Light Sources

geometry: positions and directions

- coordinate system used depends on when you specify - standard: world coordinate system
effect: lights fixed wrt world geometry
- demo: http://www.xmission.com/~nate/tutors.html
- alternative: camera coordinate system
- effect: lights attached to camera (car headlights)
- points and directions undergo normal model/view transformation
illumination calculations: camera coords

Types of Reflection

specular (a.k.a. mirror or regular) reflection causes light to propagate without scattering.

- diffuse reflection sends light in all directions with equal energy.
- glossy/mixed reflection is a weighted combination of specular and diffuse

- most surfaces exhibit complex reflectances - vary with incident and reflected directions. - model with combination

specular + glossy + diffuse $=$
reflectance distribution

Surface Roughness

- at a microscopic scale, all real surfaces are rough
- cast shadows on themselves
- "mask" reflected light:

Surface Roughness

Physics of Diffuse Reflection

- ideal diffuse reflection
- very rough surface at the microscopic level
notice another effect of roughness:
- each "microfacet" is treated as a perfect mirror
incident light reflected in different directions by different facets.
end result is mixed reflectance
- smoother surfaces are more specular or glossy.
- random distribution of facet normals results in diffuse reflectance.
- real-world example: chalk
- microscopic variations mean incoming ray of light equally likely to be reflected in any direction over the hemisphere
- what does the reflected intensity depend on?

Lambert's Cosine Law

- ideal diffuse surface reflection
the energy reflected by a small portion of a surface from a light source in a given direction is proportional to the cosine of the angle between that direction and the surface normal
reflected intensity
- independent of viewing direction
- depends on surface orientation wrt light
- often called Lambertian surfaces

