Transformations IV

Week 3, Wed Jan 23

Readings for Jan 16-25

- FCG Chap 6 Transformation Matrices
 - except 6.1.6, 6.3.1
- FCG Sect 13.3 Scene Graphs
- RB Chap Viewing
 - Viewing and Modeling Transforms until Viewing Transformations
 - Examples of Composing Several Transformations through Building an Articulated Robot Arm
- RB Appendix Homogeneous Coordinates and Transformation Matrices
 - until Perspective Projection
- RB Chap Display Lists
Review: General Transform Composition

- transformation of geometry into coordinate system where operation becomes simpler
 - typically translate to origin

- perform operation

- transform geometry back to original coordinate system
Review: Arbitrary Rotation

- arbitrary rotation: change of basis
 - given two orthonormal coordinate systems \(XYZ \) and \(ABC \)
 - transformation from one to the other is matrix \(R \) whose columns are \(A, B, C \):

\[
R(X) = \begin{bmatrix}
a_x & b_x & c_x & 0 \\
a_y & b_y & c_y & 0 \\
a_z & b_z & c_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} = (a_x, a_y, a_z, 1) = A
\]
Review: Transformation Hierarchies

• scene may have a hierarchy of coordinate systems
 • stores matrix at each level with incremental transform from parent’s coordinate system

• scene graph
Review: Transformation Hierarchies

- demo:
 - 1. all scene graph parts would be on top of each other if translation set to 0 everywhere
 - 2. composition of transformations can be surprising and tricky even with just a few simple building blocks
 - 3. negative scale is a reflection

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/scenegraphs.html
Matrix Stacks

- challenge of avoiding unnecessary computation
 - using inverse to return to origin
 - computing incremental $T_1 \rightarrow T_2$

![Diagram showing object coordinates and world coordinates with transformations $T_1(x)$, $T_2(x)$, and $T_3(x)$]
Matrix Stacks

\[\text{glPushMatrix} \]
\[\text{glPopMatrix} \]

\[\text{D} = \text{C scale}(2,2,2) \text{ trans}(1,0,0) \]

\[\text{glPushMatrix} \]
\[\text{glPopMatrix} \]

\[\text{DrawSquare}() \]
\[\text{glPushMatrix}() \]
\[\text{glScale3f}(2,2,2) \]
\[\text{glTranslate3f}(1,0,0) \]
\[\text{DrawSquare}() \]
\[\text{glPopMatrix}() \]
Modularization

• drawing a scaled square
 • push/pop ensures no coord system change

```c
void drawBlock(float k) {
  glPushMatrix();

  glScalef(k,k,k);
  glBegin(GL_LINE_LOOP);
  glVertex3f(0,0,0);
  glVertex3f(0,0,0);
  glVertex3f(1,0,0);
  glVertex3f(1,0,0);
  glVertex3f(1,1,0);
  glVertex3f(1,1,0);
  glVertex3f(0,1,0);
  glVertex3f(0,1,0);
  glEnd();

  glPopMatrix();
}
```
Matrix Stacks

• advantages
 • no need to compute inverse matrices all the time
 • modularize changes to pipeline state
 • avoids incremental changes to coordinate systems
 • accumulation of numerical errors

• practical issues
 • in graphics hardware, depth of matrix stacks is limited
 • (typically 16 for model/view and about 4 for projective matrix)
Transformation Hierarchy Example 3

```c
GLfloat glLoadIdentity();
GLfloat glTranslatef(4,1,0);
GLfloat glPushMatrix();
GLfloat glRotatef(45,0,0,1);
GLfloat glTranslatef(0,2,0);
GLfloat glScalef(2,1,1);
GLfloat glTranslate(1,0,0);
GLfloat glPopMatrix();
```
Transformation Hierarchy Example 4

glTranslate3f(x,y,0);
glRotatef(\theta_1,0,0,1);
DrawBody();
glPushMatrix();
 glTranslate3f(0,7,0);
 DrawHead();
 glPopMatrix();
glPushMatrix();
 glTranslate(2.5,5.5,0);
 glRotatef(\theta_2,0,0,1);
 DrawUArm();
 glTranslate(0,-3.5,0);
 glRotatef(\theta_3,0,0,1);
 DrawLArm();
 glPopMatrix();
... (draw other arm)
Hierarchical Modelling

• advantages
 • define object once, instantiate multiple copies
 • transformation parameters often good control knobs
 • maintain structural constraints if well-designed

• limitations
 • expressivity: not always the best controls
 • can’t do closed kinematic chains
 • keep hand on hip
 • can’t do other constraints
 • collision detection
 • self-intersection
 • walk through walls
Display Lists
Display Lists

• precompile/cache block of OpenGL code for reuse
 • usually more efficient than immediate mode
 • exact optimizations depend on driver
 • good for multiple instances of same object
 • but cannot change contents, not parametrizable
 • good for static objects redrawn often
 • display lists persist across multiple frames
 • interactive graphics: objects redrawn every frame from new viewpoint from moving camera
• can be nested hierarchically
• snowman example
 http://www.lighthouse3d.com/opengl/displaylists
void drawSnowMan() {

 glColor3f(1.0f, 1.0f, 1.0f);

 // Draw Body
 glTranslatef(0.0f, 0.75f, 0.0f);
 glutSolidSphere(0.75f, 20, 20);

 // Draw Head
 glTranslatef(0.0f, 1.0f, 0.0f);
 glutSolidSphere(0.25f, 20, 20);

 // Draw Nose
 glPushMatrix();
 glColor3f(1.0f, 0.5f, 0.5f);
 glRotatef(0.0f, 1.0f, 0.0f, 0.0f);
 glutSolidCone(0.08f, 0.5f, 10, 2);
 glPopMatrix();

 // Draw Eyes
 glPushMatrix();
 glColor3f(0.0f, 0.0f, 0.0f);
 glTranslatef(0.05f, 0.10f, 0.18f);
 glutSolidSphere(0.05f, 10, 10);
 glTranslatef(-0.1f, 0.0f, 0.0f);
 glutSolidSphere(0.05f, 10, 10);
 glPopMatrix();
}
Instantiate Many Snowmen

// Draw 36 Snowmen
for(int i = -3; i < 3; i++)
 for(int j=-3; j < 3; j++) {
 glPushMatrix();
 glTranslatef(i*10.0, 0, j * 10.0);
 // Call the function to draw a snowman
 drawSnowMan();
 glPopMatrix();
 }

36K polygons, 55 FPS
Making Display Lists

```c
GLuint createDL() {
    GLuint snowManDL;
    // Create the id for the list
    snowManDL = glGenLists(1);
    glNewList(snowManDL, GL_COMPILE);
    drawSnowMan();
    glEndList();
    return(snowManDL); }

snowmanDL = createDL();
for(int i = -3; i < 3; i++)
    for(int j=-3; j < 3; j++) {
        glPushMatrix();
        glTranslatef(i*10.0, 0, j * 10.0);
        glCallList(Dlid);
        glPopMatrix(); }
```

36K polygons, 153 FPS
Transforming Normals
Transforming Geometric Objects

- lines, polygons made up of vertices
 - transform the vertices
 - interpolate between
- does this work for everything? no!
 - normals are trickier
Computing Normals

- normal
 - direction specifying orientation of polygon
 - $w=0$ means direction with homogeneous coords
 - vs. $w=1$ for points/vectors of object vertices
 - used for lighting
 - must be normalized to unit length
 - can compute if not supplied with object

\[N = (P_2 - P_1) \times (P_3 - P_1) \]
Transforming Normals

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 0
\end{bmatrix}
= \begin{bmatrix}
 m_{11} & m_{12} & m_{13} & T_x \\
 m_{21} & m_{22} & m_{23} & T_y \\
 m_{31} & m_{32} & m_{33} & T_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 0
\end{bmatrix}
\]

- so if points transformed by matrix \(\mathbf{M} \), can we just transform normal vector by \(\mathbf{M} \) too?
 - translations OK: \(w=0 \) means unaffected
 - rotations OK
 - uniform scaling OK

- these all maintain direction
Transforming Normals

- nonuniform scaling does not work
- $x-y=0$ plane
 - line $x=y$
 - normal: $[1, -1, 0]$
 - direction of line $x=-y$
 - (ignore normalization for now)
Transforming Normals

• apply nonuniform scale: stretch along x by 2
 • new plane x = 2y
• transformed normal: [2,-1,0]

\[
\begin{bmatrix}
2 \\
-1 \\
0 \\
0
\end{bmatrix}
=\begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
-1 \\
0 \\
0
\end{bmatrix}
\]

• normal is direction of line x = -2y or x+2y=0
• not perpendicular to plane!
• should be direction of 2x = -y
Planes and Normals

- plane is all points perpendicular to normal
 - $N \cdot P = 0$ (with dot product)
 - $N^T \cdot P = 0$ (matrix multiply requires transpose)

\[
N = \begin{bmatrix}
a \\
b \\
c \\
d \\
\end{bmatrix},\quad P = \begin{bmatrix}
x \\
y \\
z \\
w \\
\end{bmatrix}
\]

- explicit form: plane = $ax + by + cz + d$
Finding Correct Normal Transform

• transform a plane

\[
\begin{align*}
P, & \\
N, & \\
N' = QN, & \\
N^T P' = 0, & \\
(QN)^T (MP) = 0, & \\
N^T Q^T MP = 0, & \\
Q^T M = I & \\
Q = (M^{-1})^T & \\
\end{align*}
\]

given M, what should Q be?

stay perpendicular

substitute from above

thus the normal to any surface can be transformed by the inverse transpose of the modelling transformation

\[
(AB)^T = B^T A^T
\]

\[
N^T P = 0 \text{ if } Q^T M = I
\]