Representing Orientation

- Representing Translations and Positions
 - to translate by 30 units in \(x \):
 - add together thirty 1 unit translations
 - arithmetic interpolation
 - divide the total translation by \(n \)

- Representing Rotations and Orientations
 - to rotate by 30 degrees:
 - \(R = R^T \)
 - where \(R \) is a 3x3 or 4x4 matrix that rotates by one degree
 - geometric interpolation
 - take the \(n \)th root of the desired final rotation matrix

Rotation in a 2D world

- SO(3) group in Lie algebra
 - four common alternative numerical representations:
 - 3x3 rotation matrix
 - Euler angles (fixed angles)
 - exponential map
 - unit quaternions

Rotation in a 3D world

- 3x3 Rotation Matrix
 - 9 elements
 - 3 orthogonality constraints
 - renormalization algorithms
 - extracting pure rotational component (polar decopm)

 \[
 \begin{bmatrix}
 m_1 & m_2 & m_3 \\
 m_2 & m_3 & m_1 \\
 m_3 & m_1 & m_2
 \end{bmatrix}
 \]

 - where

 \[a \cdot b = 0 \]

 \[b \times c = 0 \]

 - \(R = \begin{bmatrix} a & b & c \end{bmatrix} \)

 - and determinant = 1

3x3 Rotation Matrix

- Euler's Rotation Theorem
 - can always go from one orientation to another
 - with one rotation about a single axis

- Exponential Map
 - idea: encode amount of rotation into magnitude of \(k \)

 \[k = \theta \]

 \[Rot(k, \theta) \rightarrow SO(3) \]

 - axis definition undefined for no rotation
 - therefore define the zero vector to be the identity rotation
 - singularities for \(\theta = 2\pi \)

- Unit Quaternions
 - \(\begin{bmatrix} w \ + \ x \ + \ y \ + \ z \end{bmatrix} \)

 \[\theta = \frac{\sqrt{2}}{2} \]

 \[q = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2}) \]

 \[q = (x, y, z) \]

 - rotation of a vector, i.e., a point in a coord frame:

 \[\vec{v}' = Rot(k, \theta) \vec{v} = q \vec{v} \cdot \vec{q} \]

 \[\vec{v} = (0, 0, 1) \]

 \[\vec{q} = (x, y, z) \]

 - two successive rotations

 \[q_1(q_2, \vec{v}) \cdot \vec{q}_2 \]

Orientation Interpolation

- Linear interpolation of quaternions
 - note: \(q \) and \(-q\) represent the same orientation

 \[q_1 \rightarrow q_2 \text{ or } q_1 \rightarrow -q_1 \]

 - choose shorter path, use dot product to compute

 \[\cos \theta = q_1 \cdot q_2 = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2 \]

- Orientation Interpolation
 - SLERP instead of LERP

 \[slerp(q_1, q_2, \alpha) = \frac{\sin((1-\alpha)\theta)}{\sin\theta} q_1 + \frac{\sin(\alpha\theta)}{\sin\theta} q_2 \]

 - smooth interpolation of multiple orientations:
 - construct smooth curve on the 4D sphere

Other Rotation

- how many degrees of freedom in 3D ?

 - desired features of any representation
 - unique
 - continuous
 - compact
 - efficient to work with

Euler Angles

- choose 3 successive rotations about different axes

 - e.g., \(RPY \) : \(\psi, \theta, \phi \)

 \[R_{xyz} = Rot(z, \alpha) \cdot Rot(y, \beta) \cdot Rot(x, \gamma) \]

 - common alternative: \(\alpha, \beta, \gamma \)

 - problem: "gimbal lock"

 - problem: non-uniqueness \(RPY(0,90,0) = RPY(90,90,90) \)