Project 2: Navigation

- five ways to navigate
 - Absolute Rotate/Translate Keyboard
 - Absolute Lookat Keyboard
 - move wrt global coordinate system
 - Relative Rolling Ball Mouse
 - spin around with mouse, as discussed in class
 - Relative Flying
 - Relative Mouselook
 - use both mouse and keyboard, move wrt camera

- template: colored ground plane
Roll/Pitch/Yaw
MOUSELOOK

Up Vector
(Yaw (Mouse x))

Roll

Gaze Vector (w, s)

Pitch (Mouse y)

Lateral Vector (a, d)
FLYING

- Up Vector
- Yaw (Mouse x)
- Pitch (Mouse y)
- Lateral Vector
- Roll
- Gaze Vector (w,s)
Demo
Hints: Viewing

• don’t forget to flip y coordinate from mouse
 • window system origin upper left
 • OpenGL origin lower left

• all viewing transformations belong in modelview matrix, not projection matrix
Hint: Incremental Relative Motion

- motion is wrt current camera coords
 - maintaining cumulative angles wrt world coords would be difficult
- computation in coord system used to draw previous frame (what you see!) is simple
 - at time k, want \(p' = I_k l_{k-1} \cdots I_5 l_4 l_3 l_2 l_1 C_p \)
 - thus you want to premultiply: \(p' = I C_p \)
 - but postmultiplying by new matrix gives \(p' = C I p \)
- OpenGL modelview matrix has the info! sneaky trick:
 - dump out modelview matrix with \texttt{glGetDoublev()}
 - wipe the stack with \texttt{glIdentity()}
 - apply incremental update matrix
 - apply current camera coord matrix
- be careful to leave the modelview matrix unchanged after your display call (using push/pop)
Caution: OpenGL Matrix Storage

- OpenGL internal matrix storage is columnwise, not rowwise

```
| a | e | i | m |
| b | f | j | n |
| c | g | k | o |
| d | h | l | p |
```

- opposite of standard C/C++/Java convention
- possibly confusing if you look at the matrix from glGetDoublev()!