Project 2: Navigation

- · five ways to navigate
- · Absolute Rotate/Translate Keyboard
- · Absolute Lookat Keyboard
 - · move wrt global coordinate system
- · Relative Rolling Ball Mouse
 - · spin around with mouse, as discussed in class
- Relative Flying
- · Relative Mouselook
 - · use both mouse and keyboard, move wrt camera

· template: colored ground plane

Up Vector MOUSELOOK (Mouse y) Lateral Vector (a,d) Gaze Vector (w,s)

Up Vector FLYING (Mouse x) (Mouse y) Lateral Vector Gaze Vector (w,s)

Demo

Hints: Viewing

- · don't forget to flip y coordinate from mouse
 - · window system origin upper left
 - OpenGL origin lower left
- all viewing transformations belong in modelview matrix, not projection matrix

Hint: Incremental Relative Motion

- motion is wrt current camera coords
- maintaining cumulative angles wrt world coords would be
- · computation in coord system used to draw previous frame (what you see!) is simple
 - at time k, want p' = I_kI_{k-1}....I₅I₄I₃I₂I₁Cp
 thus you want to premultiply: p'=ICp
- · but postmultiplying by new matrix gives p'=Clp
- · OpenGL modelview matrix has the info! sneaky trick:
 - · dump out modelview matrix with glGetDoublev()
 - wipe the stack with glidentity()
 - · apply incremental update matrix
- · apply current camera coord matrix
- be careful to leave the modelview matrix unchanged after your display call (using push/pop)

Caution: OpenGL Matrix Storage

· OpenGL internal matrix storage is columnwise, not rowwise

a e i m

j n b f

c q k o

d h l p

- opposite of standard C/C++/Java convention
- · possibly confusing if you look at the matrix from glGetDoublev()!