Modeling: Acquisition

Marching Cubes

(Lorensen and Cline)

Laser

Imaging (2D/3D)

Platform:WB4Scanhead:WB4Number of Polygons:243,442Scan Time:16 SecondsNumber of Scans:1

Sensing Technologies - Imaging

- Capture multiple 2D images
- Use image processing tools to create initial geometry data
- Requirements
 - Many cameras
 - Specific locations

3D Imaging

- Wave based sensors
 - Ultrasound,
 - Magnetic Resonance Imaging (MRI)
 - X-Ray
 - Computed Tomography (CT)
- Outputs
 - volumetric data (voxels)

Range Scanners

- Laser/Optical range scanner provides 2D array of depth data
- Some capture colour (texture)
- Multiple views for complete object scan:
 - Rotate object
 - Rotate sensor
 - Output point set

- Define iso-surfaces (between data values)
- Triangulate iso-surface
 - Marching Cubes

Marching Cubes: Overview

- Marching cubes: method for approximating surface defined by isovalue α, given by grid data
- Input:

Output:

- Grid data (set of 2D images)
- Threshold value (isovalue) α

- Triangulated surface that matches isovalue surface of $\boldsymbol{\alpha}$

- Voxel cube with values at eight corners
 - Each value is above or below isovalue $\boldsymbol{\alpha}$
 - Method processes one voxel at a time
- 2⁸=256 possible configurations (per voxel)
 - reduced to 15 (symmetry and rotations)
- Each voxel is either:
 - Entirely inside isosurface
 - Entirely outside isosurface
 - Intersected by isosurface

Algorithm

First pass

Identify voxels which intersect isovalue

Second pass

- Examine those voxels
- For each voxel produce set of triangles
 - approximate surface inside voxel

- For each configuration add 1-4 triangles to isosurface
- Isosurface vertices computed by:
 - Interpolation along edges (according to pixel values)
 - better shading, smoother surfaces
 - Default mid-edges

MC Problem

- Marching Cubes method can produce erroneous results
 - E.g. isovalue surfaces with "holes"
- Example:
 - voxel with configuration 6 that shares face with complement of configuration 3:

Solution

- Use different triangulations
- For each problematic configuration have more than one triangulation
- Distinguish different cases by choosing pairwise connections of four vertices on common face

 Ambiguous Face: face containing two diagonally opposite marked grid points and two unmarked ones

Source of the problems in MC method

Solution by Consistency

- Problem:
 - Connection of isosurface points on common face done one way on one face & another way on the other
- Need consistency → use different triangulations

 If choices are consistent get topologically correct surface

- Asymptotic Decider: technique for choosing which vertices to connect on ambiguous face
- Use bilinear interpolation over ambiguous face

Bilinear Interpolation

- Bilinear interpolation over face natural extension of linear interpolation along an edge
- Consider face as unit square

$$B(s,t) = \begin{pmatrix} 1-s & s \end{pmatrix} \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix} \begin{pmatrix} 1-t \\ t \end{pmatrix}$$
$$\{(s,t): 0 \le s \le 1, \quad 0 \le t \le 1\}$$

 B_{ii} - values of four face corners

Asymptotic Decider Test (cont).

- Configurations 0, 1, 2, 4, 5, 8, 9, 11 and 14 have no ambiguous faces → no modifications
- Other configurations need modifications according to number of ambiguous faces

Configuration 3+6

- Exactly one ambiguous face
- Two possible ways to connect vertices
 - two resulting triangulations

 Several different (valid) triangulations

■ Two ambiguous faces → 2² = 4 boundary polygons

Configuration 10

- As in configuration 12 two ambiguous faces
- When both faces are separated (10A) or not separated (10C) there are two components for the isovalue surface

 Three ambiguous faces → 2³=8 possibilities

 Some are equivalent → only 4 triangulations

- Modifications add considerable complexity to MC
- No significant impact on running time or total number of triangles produced
- New configurations occur in real data sets
 - But not very often

Examples and Remarks (cont)

	Config	Example L	Example 2	Example 3
	0	263.519	285,074	110,993
	1	7,705	1,912	1.673
	2	8.710	2.065	2.421
l	3A	60	0	. 6
1	38	46	0	б
L	4	28	0	0
٠L	5	5.611	1,228	1.143
	64	20	· 0	0
,L	68	47	0	0
Ľ	7A	3	0	0
L	TB.D	3	0	0
L	7C	3	0	0
L	8	4.637	906	1.146
L	9	1.003	304	261
L	10A.C	13	0	0
L	IOB,D	1	0	0
L	11	36	0	0
L	12A.C	7	0	0
L	12B.D	4	0	0
	13	0	0	0
	14	69	0	0
Table 1. Frequency of configurations				

32