Color

CPSC 314

Basics Of Color

Elements of color:

Basics of Color

Physics

- Illumination
- Electromagnetic spectra
- Reflection
- Material properties
- Surface geometry and microgeometry (i.e., polished versus matte versus brushed)
Perception
- Physiology and neurophysiology
- Perceptual psychology

Electromagnetic Spectrum

THE ELECTROMAGNETIC SPECTRUM

Light Sources

Common light sources dififer in the kind of spectrum they emit:

- Continuous spectrum
- Energy is emitted at all wavelengths
- Blackbody radiation
- Tungsten light bulbs
- Certain fluorescent lights
- Sunlight
- Electrical arcs
- Line spectrum
- Energy is emitted at certain discrete frequencies

Blackbody Radiation

Black body

- Dark material, so that reflection can be neglected
- Spectrum of emitted light changes with temperature
- This is the origin of the term "color temperature"
- E.g. when setting a white point for your monitor
- Cold: mostly infrared
- Hot: redish
- Very hot: bluish
- Demo:

White Light

Sun or light bulbs emit all frequencies within the visible range to produce what we perceive as the "white light"
But the exact tone depends on the emitted spectrum

Energy

Sunlight Spectrum

Electromagnetic Spectrum

Continuous Spectrum

Example:

- Sunlight
- Various "daylight" lamps

Line Spectrum

Examples:

- lonized gases
- Lasers
- Some fluorescent lamps

White Light and Color

When white light is incident upon an object, some frequencies are reflected and some are absorbed by the object

- But generally, the wavelength of reflected photons remains the same
- Exceptions: fluorescense, phosphorescense...

Combination of frequencies present in the reflected light that determines what we perceive as the color of the object

Physiology of Vision

The retina

- Rods
- B/w, edges Cones
- Color!

Physiology of Vision

Center of retina is densely packed region called the fovea.

- Cones much denser here than the periphery

1.35 mm from rentina center
$4 \mu \mathrm{~m}$

Hue

Hue (or simply, "color") is dominant wavelength/firequency

- Integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light

How washed out or how pure the color of the light appears

- Contribution of dominant light vs. other frequencies producing white light
- Saturation: how far is color from grey
- Pink is less saturated than red, sky blue is less saturated than royal blue

Intensity vs. Brightness

Intensity: physical term

- Measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)

Lightness/brightness: perceived intensity of light

- Nonlinear

Perceptual vs. Colorimetric Terms

Perceptual

- Hue
- Saturation
- Lightness
- Reflecting objects
- Brightness
- Light sources

Colorimetric

- Dominant wavelength
- Excitation purity
- Luminance
- Luminance

Color/Lightness Constancy

Color perception also depends on

 surrounding- Colors in close proximity
- Illumination under which the scene is viewed

Adaptation, Surrounding Color

Color perception is also affected by

- Adaptation (move from sunlight to dark room)
- Surrounding color/intensity:
- Simultaneous contrast effect

Color/Lightness Constancy

Color/Lightness Constancy

Color Constancy

- Automatic "white balance" from change in illumination
- Vast amount of processing behind the scenes!
- Colorimetry vs. perception

From Color Appearance Models, fig 8-1

Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries
- Colors that look the same but have different spectra are called metamers
- Metamer demo:
http.//www.cs.brown.edu/exp/oratories/freeSoftware/catalogs/color_theory.html

Color Matching Experiments

Performed

 in the 1930s

Idea: perceptually based measurement

- shine given wavelength (λ) on a screen
- User must control three pure lights producing three other wavelengths (say $R=700 \mathrm{~nm}, \mathrm{G}=546 \mathrm{~nm}$, and $\mathrm{B}=438 \mathrm{~nm}$)
- Adjust intensity of RGB until colors are identical

Color Matching Experiment

Results

It was found that any color $S(\lambda)$ could be matched with three suitable primaries $A(\lambda), B(\lambda)$, and $C(\lambda)$

- Used monochromatic light at 438, 546, and 700 nanometers
Also found the space is linear, I.e. if

$$
R(\lambda) \equiv S(\lambda)
$$

then

$$
R(\lambda)+M(\lambda) \equiv S(\lambda)+M(\lambda)
$$

and

$$
k \cdot R(\lambda) \equiv k \cdot S(\lambda)
$$

Negative Lobes

Actually:

> Exact target match possible sometimes requires "negative light"

- Some red has to be added to target color to permit exact match using "knobs" on RGB intensity output Equivalent mathematically to removing red from RGB output

Notation

Don't confuse:

Primaries: the spectra of the three different light sources: R, G, B

- For the matching experiments, these were monochromatic (l.e. single wavelength) light!
- Primaries for displays usually have a wider spectrum
- Coefficients R, G, B
- \quad Specify how much of $\mathbf{R}, \mathbf{G}, \mathbf{B}$ is in a given color
- Color matching functions: $r(\lambda), g(\lambda), b(\lambda)$
- Specify how much of $\mathbf{R}, \mathbf{G}, \mathbf{B}$ is needed to produce a color that is a metamer for pure monochromatic light of wavelength λ

Negative Lobes

So:

Can't generate all other wavelengths with any set of three positive monochromatic lights!

Solution:

- Convert to new synthetic "primaries" to make the color matching easy

$$
\left(\begin{array}{l}
\mathbf{X} \\
\mathbf{Y} \\
\mathbf{Z}
\end{array}\right)=\left(\begin{array}{rrr}
2.36460 & -0.51515 & 0.00520 \\
-0.89653 & 1.42640 & -0.01441 \\
-0.46807 & 0.08875 & 1.00921
\end{array}\right)\left(\begin{array}{l}
\mathbf{R} \\
\mathbf{G} \\
\mathbf{B}
\end{array}\right)
$$

Note:

- $\quad \mathbf{R}, \mathbf{G}, \mathbf{B}$ are the same monochromatic primaries as before
- The corresponding matching functions $x(\lambda), y(\lambda), z(\lambda)$ are now positive everywhere
- But the primaries contain "negative" light contributions, and are therefore not physically realizable

Matching Functions CIE Color Space

- CIE defined three "imaginary" lights X, Y, and Z, any wavelength λ can be matched perceptually by positive combinations

Matching Functions Measured vs. CIE Color Spaces

Measured basis

- Monochromatic lights
- Physical observations
- Negative lobes

Transformed basis

- "imaginary" lights

All positive, unit area matching functions

- $\quad Y$ is luminance, no hue
- X,Z no luminance

Notation

Don't confuse:

Synthetic primaries X, Y, Z

- Contain negative frequencies
- Do not correspond to visible colors
- Color matching functions $x(\lambda), y(\lambda), z(\lambda)$
- Are non-negative everywhere

Coefficients X, Y, Z

- Normalized chromaticity values

$$
x=\frac{X}{X+Y+Z}, y=\frac{Y}{X+Y+Z}, z=\frac{Z}{X+Y+Z}
$$

CIE Gamut and λ Chromaticity Diagram

3D gamut

Chromaticity diagram

- Hue only, no intensity

Facts about the CIE "Horseshoe" Diagram

All visible colors lie inside the horseshoe

- Result from color matching experiments Spectral (monochromatic) colors lie around the border
- The straight line between blue and red contains the purple tones
- Colors combine linearly (l.e. along lines), since the $x y$-plane is a plane from a linear space

Facts about the CIE

"Horseshoe" Diagram (cont.)

A point C can be chosen as a white point corresponding to an illuminant

- Usually this point is of the curve swept out by the black body radiation spectra for different temperatures
- Relative to C, two colors are called complementary if they are located along a line segment through C, but on opposite sides (l.e C is an affine combination of the two colors)
- The dominant wavelength of the color is found by extending the line from C through the color to the edge of the diagram
- Some colors (I.e. purples) do not have a dominant

CIE
 Diagram

Blackbody curve

- Illumination:
- Candle 2000K
- Light bulb 3000K (A)
- Sunset/ sunrise 3200K
- Day light 6500K (D)
- Overcast day 7000K
- Lightning $>20,000 \mathrm{~K}$

Color Interpolation, Dominant \& Opponent Wavelength

RGB Color Space (Color Cube)

Define colors with (r, g, b) amounts of red, green, and blue

- Used by OpenGL
- Hardware-centric
- Describes the colors that can be generated with specific RGB light sources

RGB color cube sits within CIE color space

- Subset of perceivable colors
- Scaled, rotated, sheared cube

Device Color Gamuts

Use CIE chromaticity diagram to compare the gamuts of various devices

- $\quad \mathrm{X}, \mathrm{Y}$, and Z are hypothetical light sources, not used in practice as device primaries

Gamut Mapping

Additive vs. Subtractive Colors

Addilitive: light

- Monitors, LCDs
- RGB model

Subtractive: pigment

- Printers
- CMY(K) model

HSV Color Space

More intuitive color space for people

- H = Hue
- $S=$ Saturation
- $V=$ Value
- Or brightness B
- Or intensity I

Monitors

Monitors have nonlinear response to inputt

- Characterize by gamma
- displayedIntensity $=a^{\gamma}$ (maxIntensity)

Gamma correction

- displayedIntensity $=\left(a^{1 / \gamma}\right)^{\gamma}$ (maxIntensity)
$=\mathrm{a}$ (maxIntensity)

Gamma for CRTs:

- Around 2.4

