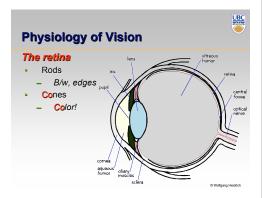


- Tungsten light bulbs Certain fluorescent lights
- Sunlight
- Electrical arcs Line spectrum
- Energy is emitted at certain discrete frequencies

Blackbody Radiation Black body Dark material, so that reflection can be neglected Spectrum of emitted light changes with temperature This is the origin of the term "color temperature" E.g. when setting a white point for your Cold: mostly infrared Hot: redish Very hot: bluish Demo:

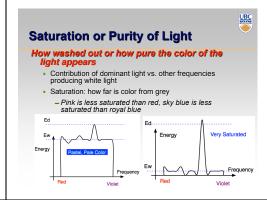
http://www.mhhe.com/physsci/astrone

UBC **White Light** Sun or light bulbs emit all frequencies within the visible range to produce what we perceive as the But the exact tone depends on the emitted spectrum $\sim \sim \sim \sim$ Frequency Violet

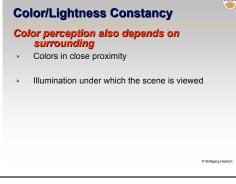

Continuous Spectrum Example: Sunlight Various "daylight" lamps CIBA_GEIGY

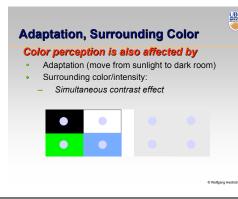
UBC **Line Spectrum Examples:** Ionized gases Lasers Some fluorescer lamps

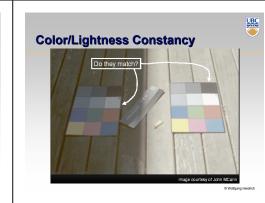
UBC **White Light and Color** When white light is incident upon an object, some frequencies are reflected and some are absorbed by the object But generally, the wavelength of reflected photons remains the same


Exceptions: fluorescense, phosphorescense... Combination of frequencies present in the reflected light that determines what we perceive as the color of the object

© Wolfgang Heidrich

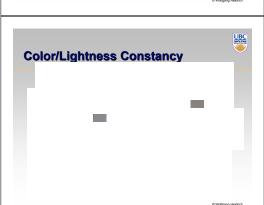

UBC **Physiology of Vision** Center of retina is densely packed region called the fovea. Cones much denser here than the periphery 1.35 mm from renting center 8 mm from rentina center

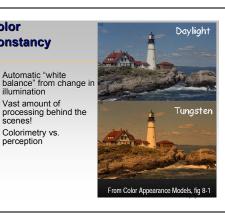

UBC Hue Hue (or simply, "color") is dominant wavelength/frequency Frequency Integration of energy for all visible wavelengths is proportional to intensity of color




Intensity vs. Brightness Intensity: physical term Measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source) Lightness/brightness: perceived intensity of Nonlinear

Perceptual vs. Colorimetric Terms Perceptual Colorimetric Dominant wavelength Excitation purity Saturation Lightness Luminance Reflecting objects Brightness Luminance Light sources UBC **Color/Lightness Constancy**





UBC **Tristimulus Theory of Color Vision** Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries Colors that look the same but have different spectra are called metamers

Idea: perceptually based measurement shine given wavelength (λ) on a screen User must control three pure lights producing three other wavelengths (say R=700 nm, G=546 nm, and B=438 nm)

L(lamda)

Color Matching Experiments

Performed

© Wolfgang Heidrich

in the 1930s

Adjust intensity of RGB until colors are identical

Color Matching Experiment

- It was found that any color $S(\lambda)$ could be matched with three suitable primaries $A(\lambda)$, $B(\lambda)$, and $C(\lambda)$
- Used monochromatic light at 438, 546, and 700 nanometers
- Also found the space is linear, I.e. if $R(\lambda) = S(\lambda)$

then and

 $R(\lambda) + M(\lambda) \equiv S(\lambda) + M(\lambda)$

 $k \cdot R(\lambda) \equiv k \cdot S(\lambda)$

UBC

Negative Lobes

Color

Constancy

illumination

scenes!

Vast amount of

Colorimetry vs.

perception

Actually: Exact target match possible sometimes

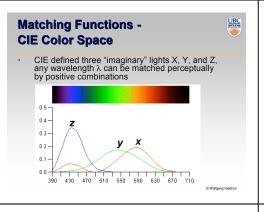
- requires "negative light"
- Some red has to be added to target color to permit exact match using "knobs" on RGB intensity output
- Equivalent mathematically to removing red from RGB output

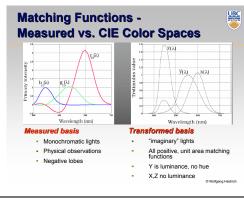
UBC

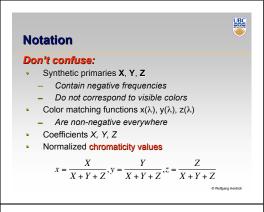
Notation

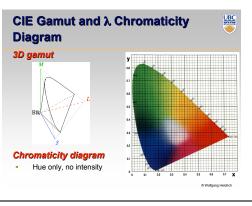
Don't confuse:

Metamer demo:


- Primaries: the spectra of the three different light sources: R, G, B
- For the matching experiments, these were monochromatic (I.e. single wavelength) light!
- Primaries for displays usually have a wider spectrum
- Coefficients R, G, B
- Specify how much of R. G. B is in a given color
- Color matching functions: $r(\lambda)$, $g(\lambda)$, $b(\lambda)$
- Specify how much of R, G, B is needed to produce a color that is a metamer for pure monochromatic light of wavelength λ


Negative Lobes Can't generate all other wavelengths with any set of three positive monochromatic lights!


Convert to new synthetic "primaries" to make the color matching (2.36460 -0.51515 0.00520\(\mathbb{R}\) -0.89653 1.42640 -0.01441 G

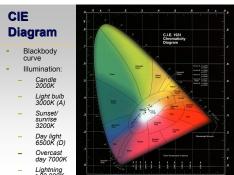


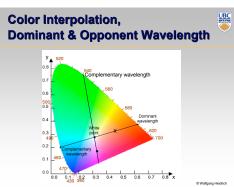
- The corresponding matching functions $x(\lambda),\,y(\lambda),\,z(\lambda)$ are now positive everywhere
- But the primaries contain "negative" light contributions, and are therefore not physically realizable

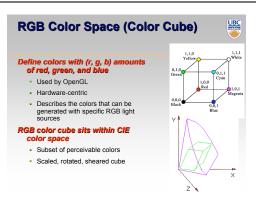
- Result from color matching experiments

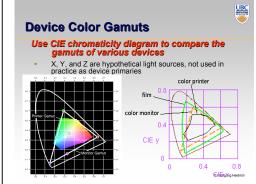
 Spectral (monochromatic) colors lie around the border
- The straight line between blue and red contains the purple tones
- Colors combine linearly (I.e. along lines), since the xy-plane is a plane from a linear space

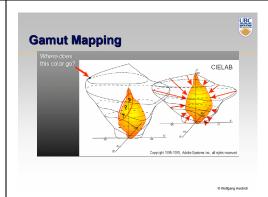
© Wolfgang Heidrich


UBC




A point C can be chosen as a white point corresponding to an illuminant


UBC


- Usually this point is of the curve swept out by the black body radiation spectra for different temperatures
- Relative to C, two colors are called complementary if they are located along a line segment through C, but on opposite sides (i.e C is an affine combination of the two colors)
- The dominant wavelength of the color is found by extending the line from C through the color to the edge of the diagram
- Some colors (I.e. purples) do not have a dominant wavelength, but their complementary color does a header

