Mesh Simplification

12,000

2,000

300

Motivation

- Reduce information content
- Accelerate rendering
- Multi-resolution models

Level of Detail (LOD)

- Refined mesh for close objects
- Simplified mesh for far

University of
Mesh Simplification

Performance Requirements

- Real-time
- Generate model at given level(s) of detail
- Focus on speed
- Requires preprocessing
- Time/space/quality tradeoff

Methodology

- Sequence of local operations
- Involve near neighbors - only small patch affected in each operation
- Each operation introduces error
- Find and apply operation which introduces the least error

Simplification Operations (1)

- Decimation
- Vertex removal:
- $\mathrm{V} \leftarrow \mathrm{v}-1$
- $f \leftarrow f-2$

Simplification Operations (2)

- Decimation
- Edge collapse
- $\mathrm{v} \leftarrow \mathrm{v}$ - 1
- $\mathrm{f} \leftarrow \mathrm{f}-2$

- Vertices may move

Simplification Operations (3)

- Contraction
- Pair contraction

- Vertices may move

Error Control

- Local error: Compare new patch with previous iteration
- Fast
- Accumulates error
- Memory-less
- Global error: Compare new patch with original mesh
- Slow
- Better quality control
- Can be used as termination condition
- Must remember the original mesh throughout the algorithm

Local vs. Global Error

2000 faces

University of
488 faces
488 faces

Mesh Simplification

Simplification Error Metrics

- Measures

- Distance to plane
- Curvature
- Usually approximated
- Average plane
- Discrete curvature

The Basic Algorithm

- Repeat
- Select the element with minimal error
- Perform simplification operation (remove/contract)
- Update error (local/global)
- Until mesh size / quality is achieved

I mplementation Details

- Vertices/Edges/Faces data structure
- Easy access from each element to neighboring elements
- Use priority queue (e.g. heap)
- Fast access to element with minimal error
- Fast update

Vertex Removal Algorithm

- Simplification operation: Vertex removal
- Error metric: Distance to average plane
- May preserve mesh features (creases)

Algorithm Outline

- Characterize local topology/geometry
- Classify vertices as removable or not
- Repeat
- Remove vertex
- Triangulate resulting hole
- Update error of affected vertices
- Until reduction goal is met

Triangulating the Hole

- Vertex removal produces non-planar loop
- Split loop recursively
- Split plane orthogonal to the average plane
- Control aspect ratio
- Triangulation may fail
- Vertex is not removed

Example

Pros and Cons

- Pros:
- Efficient
- Simple to implement and use
- Few input parameters to control quality
- Reasonable approximation
- Works on very large meshes
- Preserves topology
- Vertices are a subset of the original mesh
- Cons:
- Error is not bounded
- Local error evaluation causes error to accumulate

