Mesh Simplification

12,000

2,000

300

Motivation

- Reduce information content
- Accelerate rendering
- Multi-resolution models

Level of Detail (LOD)

- Refined mesh for close objects
- Simplified mesh for far

Performance Requirements

- Real-time
 - Generate model at given level(s) of detail
 - Focus on speed
 - Requires preprocessing
 - Time/space/quality tradeoff

Methodology

- Sequence of local operations
 - Involve near neighbors only small *patch* affected in each operation
 - Each operation introduces error
 - Find and apply operation which introduces the least error

Simplification Operations (1)

- Decimation
 - Vertex removal:
 - V ← V-1
 - ∎ f ← f-2

 Remaining vertices - subset of original vertex set

Simplification Operations (2)

- Decimation
 - Edge collapse
 - V ← V-1
 - ∎ f ← f-2

Vertices may move

Simplification Operations (3)

- Contraction
 - Pair contraction

Vertices may move

Error Control

- Local error: Compare new patch with previous iteration
 - Fast
 - Accumulates error
 - Memory-less
- Global error: Compare new patch with original mesh
 - Slow
 - Better quality control
 - Can be used as termination condition
 - Must remember the original mesh throughout the algorithm

488 faces

488 faces

- Measures
 - Distance to plane
 - Curvature
- Usually approximated
 - Average plane
 - Discrete curvature

The Basic Algorithm

- Repeat
 - Select the element with minimal error
 - Perform simplification operation (remove/contract)
 - Update error (local/global)
- Until mesh size / quality is achieved

- Vertices/Edges/Faces data structure
 - Easy access from each element to neighboring elements
- Use priority queue (e.g. heap)
 - Fast access to element with minimal error
 - Fast update

Simplification operation:
Vertex removal

 Error metric: Distance to average plane

 May preserve mesh features (creases)

Algorithm Outline

- Characterize local topology/geometry
- Classify vertices as removable or not
- Repeat
 - Remove vertex
 - Triangulate resulting hole
 - Update error of affected vertices
- Until reduction goal is met

Triangulating the Hole

- Vertex removal produces non-planar loop
 - Split loop recursively
 - Split plane orthogonal to the average plane
- Control aspect ratio
- Triangulation may fail
 - Vertex is not removed

University of

British Columbia

University of British Columbia

Pros and Cons

- Pros:
 - Efficient
 - Simple to implement and use
 - Few input parameters to control quality
 - Reasonable approximation
 - Works on very large meshes
 - Preserves topology
 - Vertices are a subset of the original mesh
- Cons:
 - Error is not bounded
 - Local error evaluation causes error to accumulate

