University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Lighting/Shading I

Week 6, Fri Feb 16
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Correction/News

 Homework 2 was posted Wed
e due Fri Mar 2

* Project 2 out today
* due Mon Mar 5

News

 midterms returned
* project 2 out

Midterm Grading

CS314 Jan07 Midterm 1 Unscaled Grade Distribution
(average 58)

12

10

F:0-32 0:33-39 C: 40-56 B: 57-72 Ay 7385 A4 B5-100

Project 2: Navigation

- five ways to navigate
« Absolute Rotate/Translate Keyboard

Absolute Lookat Keyboard
* move wrt global coordinate system

Relative Rolling Ball Mouse
 spin around with mouse, as discussed in class

Relative Flying

Relative Mouselook
 use both mouse and keyboard, move wrt camera

» template: colored ground plane

Roll/Pitch/Yaw

Yaw

2

MOUSELOOK

(Mouse v]

Lateral Vector
(a,d)

Gaze Vector
(w,s)

FLYING

(a,d) Roll [iAuEeTg]

Lateral Vector

Gaze Vector
(w,s)

Demo

Hints: Viewing

» don't forget to flip y coordinate from mouse
» window system origin upper left
* OpenGL origin lower left

» all viewing transformations belong in
modelview matrix, not projection matrix

10

Hint: Incremental Relative Motion

motion is wrt current camera coords

* maintaining cumulative angles wrt world coords would be
difficult

« computation in coord system used to draw previous frame
(what you see!) is simple
« at time k, want p' = Iklk-1 |5|4|3|2|1Cp
* thus you want to premultiply: p’=ICp
* but postmultiplying by new matrix gives p’=Clp
* OpenGL modelview matrix has the info! sneaky trick:
« dump out modelview matrix with glGetDoublev ()
» wipe the stack with glIdentity ()
 apply incremental update matrix
 apply current camera coord matrix

* be careful to leave the modelview matrix unchanged after your
display call (using push/pop)

11

Caution: OpenGL Matrix Storage

* OpenGL internal matrix storage is
columnwise, not rowwise

a e 1 m
b £ J n
c g k o
d h 1 p

» opposite of standard C/C++/Java convention

» possibly confusing if you look at the matrix
from glGetDoublev()!

12

Reading for Wed/Today/Next Time

» FCG Chap 9 Surface Shading
* RB Chap Lighting

13

Review: Computing Barycentric

| Coordinates i
« 2D triangle area (a,Byy) =

B (1,0,0)
* half of parallelogram area
» from cross product

_ (a.B,y) =
A= Apy +Apy tAp; (0,0,1)
£
E, (a,p) =
(0,1,0)
b =Ap, /A

weighted combination of three points
Y = Aps /A [demo]

14

Review: Light Sources

» directional/parallel lights
* point at infinity: (x,y,z,0)T

* point lights
« finite position: (x,y,z,1)"

» spotlights
* position, direction, angle

- ambient lights

i

N

AA R

&

15

Lighting |

16

Light Source Placement

* geometry: positions and directions
- standard: world coordinate system

» effect: lights fixed wrt world geometry

 demo:
http://www.xmission.com/~nate/tutors.html

- alternative: camera coordinate system
- effect: lights attached to camera (car headlights)

 points and directions undergo normal
model/view transformation

 llumination calculations: camera coords

17

Types of Reflection

« specular (a.k.a. mirror or reqular) reflection causes

light to propagate without scattering.

* diffuse reflection sends light in all directions with

equal energy.
Y

* mixed reflection is a weighted
combination of specular and diffuse. /\JA

18

Types of Reflection

* retro-reflection occurs when incident energy
reflects in directions close to the incident
direction, for a wide range of incident

directions. X_\

» gloss is the property of a material surface
that involves mixed reflection and is
responsible for the mirror like appearance of

rough surfaces.
4
NEZ

19

Reflectance Distribution Model

* most surfaces exhibit complex reflectances
» vary with incident and reflected directions.
* model with combination

NN N X

specular + glossy + diffuse =
reflectance distribution

20

Surface Roughness

* at a microscopic scale, all

real surfaces are rough ~ —/\

e cast shadows on
themselvesW ‘ /ﬂ/

ha oW shadow

* “mask” reflected light:

asked Light

21

Surface Roughness

\\/%@\

 notice another effect of roughness:
* each “microfacet” is treated as a perfect mirror.

* incident light reflected in different directions by
different facets.

 end result is mixed reflectance.
» smoother surfaces are more specular or glossy.

* random distribution of facet normals results in diffuse
reflectance.

22

Physics of Diffuse Reflection

iIdeal diffuse reflection

* very rough surface at the microscopic level
* real-world example: chalk

* microscopic variations mean incoming ray of
light equally likely to be reflected in any
direction over the hemisphere

- what does the reflected intensity depend on?

N

23

Lambert’s Cosine Law

* ideal diffuse surface reflection

the energy reflected by a small portion of a surface from a
light source in a given direction is proportional to the cosine
of the angle between that direction and the surface normal

* reflected intensity

* independent of viewing direction
- depends on surface orientation wrt light
» often called Lambertian surfaces

24

Lambert’s Law

Lambert's Cosine Law

i A T A
|1 ¥ - - =, J I
P) F s I'. N e ¥
% -

e

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

Computing Diffuse Reflection

* depends on angle of incidence: angle between surface
normal and incoming light

. — / An
Liitfuse = Kd light €08 ©

* in practice use vector arithmetic
* Ldiffuse = Kd light @ * D

- always normalize vectors used in lighting!!!
 n, 1should be unit vectors

* scalar (B/W intensity) or 3-tuple or 4-tuple (color)
- k4 diffuse coefficient, surface color
lignt: INncoming light intensity
lyimuse: OUtgoINg light intensity (for diffuse reflection)

26

Diffuse Lighting Examples

» Lambertian sphere from several lighting

angles:

* need on

* [demo

y consider angles from 0° to 90°
Brown exploratory on reflection

* http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/
exploratories/applets/reflection2D/reflection_2d java browser.html

27

Specular Reflection

shiny surfaces exhibit specular reflection
* polished metal

* glossy car finish

specular highlight

* bright spot from light shining on a specular surface
view dependent

* highlight position is function of the viewer’s position

diffuse diffuse
plus
specular

28

Specular Highlights

Michiel van de Panne

29

Physics of Specular Reflection
* at the microscopic level a specular reflecting
surface is very smooth

* thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

* the smoother the surface, the closer it
becomes to a perfect mirror

30

Optics of Reflection

* reflection follows Snell’s Law:

* incoming ray and reflected ray lie in a plane
with the surface normal

 angle the reflected ray forms with surface
normal equals angle formed by incoming ray
and surface normal

7]
4

/8]0 O ight = Oryefiection

]

31

Non-ldeal Specular Reflectance

Snell's law applies to perfect mirror-like surfaces,
but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

one option: model the microgeometry of the
surface and explicitly bounce rays off of it

or...

Empirical Approximation

» we expect most reflected light to travel in
direction predicted by Snell's Law

* but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

* as angle from ideal reflected ray increases,
we expect less light to be reflected

33

Empirical Approximation

angular falloff
7]
4.

<

i

how might we model this falloff?

34

Phong Lighting

* most common lighting model in computer
graphics
 (Phong Bui-Tuong, 1975)

n,.
Ispecular = ksIlight (COS ¢) o

* Ngyiny * PUrely empirical Z_
constant, varies rate of falloff

* kg: specular coefficient,
highlight color

* no physical basis, works
ok in practice

35

Phong Lighting: The n Term

shiny

« Phong reflectance term drops off with divergence of viewing angle from
ideal reflected ray

Viewing angle — reflected angle
36

Phong Examples

varying |

varying n

shiny

*1 1]

37

Calculating Phong Lighting

« compute cosine term of Phong lighting with vectors

n.,.
_ shiny
Ispecular — ksIlight (V ° l')
* V: unit vector towards viewer/eye =)
* r: ideal reflectance direction (unit vector) 73 v =
* Kg: specular component /5] 4

* highlight color
lignt: INcoming light intensity

* how to efficiently calculate r ?

38

Calculating R Vector

P = N cos 6 = projection of L onto N

39

Calculating R Vector

P = N cos 6 = projection of L onto N
P=N(N-L)

40

Calculating R Vector

P =N cos 0 |L| [N|
P=Ncos6
P=N(N-L)

projection of L onto N
L, N are unit length

41

Calculating R Vector

P=Ncos9|L||N| projection of L onto N
P=Ncos6 L, N are unit length

P=N(N-L)

2P=R+L
2P-L=R
2(N(N-L))-L=R

42

Phong Lighting Model

« combine ambient, diffuse, specular components

#lights

Itotal = ksIambient + EII (kd (n * ll) + ks(V * ri)nShiny)
i=1

- commonly called Phong lighting
* once per light
* once per color component

* reminder: normalize your vectors when calculating!

43

Phong Lighting: Intensity Plots

Phong

|:!I:n-tln'nﬂ'n:

d,= 60’

§=25

Paimmuse

44

Blinn-Phong Model

* variation with better physical interpretation
« Jim Blinn, 1977

(x) =k_(h*n) " shiny o[(x);withh=(1+v)/2

OI/lt

 h: halfway vector
* h must also be explicitly normalized: h / |h|
* highlight occurs when h near n

45

Light Source Falloff

 quadratic falloff

* brightness of objects depends on power per
unit area that hits the object

» the power per unit area for a point or spot light
decreases quadratically with distance

Area 4nr?

o
.
ot
.
e
.
ot
.
o
o
.

‘e
‘e
.

46

Light Source Falloff

* non-quadratic falloff
* many systems allow for other falloffs
» allows for faking effect of area light sources

* OpenGL / graphics hardware
- 1.: intensity of light source
* x: object point
» 1. distance of light from x

1

ar® +br +c

[in(x)= .]O

47

Lighting Review

* lighting models
» ambient
* normals don’'t matter
» Lambert/diffuse
» angle between surface normal and light
* Phong/specular
 surface normal, light, and viewpoint

48

Lighting in OpenGL

* light source: amount of RGB light emitted

* value represents percentage of full intensity
e.g., (1.0,0.5,0.5)

* every light source emits ambient, diffuse, and specular
light

« materials: amount of RGB light reflected

* value represents percentage reflected
e.g., (0.0,1.0,0.5)

* Interaction: multiply components
* red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

49

Lighting in OpenGL

glLightfv(GL LIGHTO, GL_AMBIENT, amb_light rgba);
glLightfv(GL LIGHTO, GL_DIFFUSE, dif light rgba);
glLightfv(GL LIGHTO, GL SPECULAR, spec_light rgba);
glLightfv(GL LIGHTO, GL_POSITION, position);
glEnable(GL LIGHTO);

glMaterialfv(GL_FRONT, GL AMBIENT, ambient rgba);
glMaterialfv(GL_ FRONT, GL DIFFUSE, diffuse rgba);
glMaterialfv(GL_FRONT, GL SPECULAR, specular rgba);
glMaterialfv(GL_FRONT, GL SHININESS, n);

« warning: glMaterial is expensive and tricky

 use cheap and simple glColor when possible
+ see OpenGL Pitfall #14 from Kilgard’s list

http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

50

