

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007

Tamara Munzner

Lighting/Shading I

Week 6, Wed Feb 14

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

News

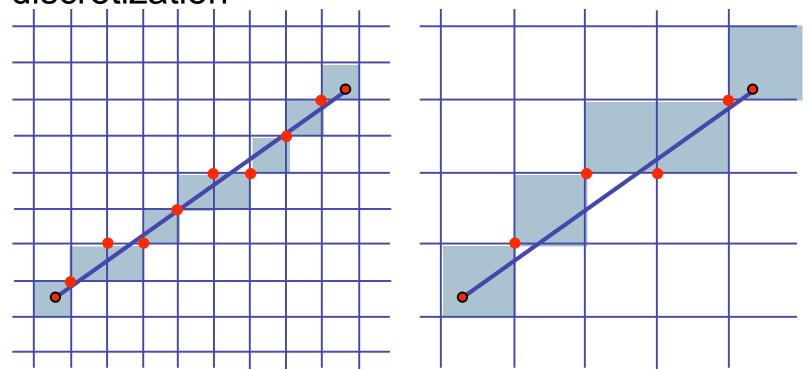
- Homework 2 out today
- Project 2 out Friday
 - due Mon Feb 26 instead of Fri Feb 23

Reading for Today & Next 2 Lectures

- FCG Chap 9 Surface Shading
- RB Chap Lighting

Review: Scan Conversion

- convert continuous rendering primitives into discrete fragments/pixels
 - given vertices in DCS, fill in the pixels
- display coordinates required to provide scale for discretization



Correction: Making It Fast: Reuse Computation

midpoint: if f(x+1, y+.5) < 0 then y = y+1
on previous step evaluated f(x-1, y-.5) or f(x-1, y+.5)
f(x+1, y) = f(x,y) + (y₀-y₁)
f(x+1, y+1) = f(x,y) + (y₀-y₁) + (x₁-x₀)
y=y0
d = f(x0+1, y0+.5)
for (x=x0; x <= x1; x++) {
draw(x,y);
if (d<0) then {

d = d + (x1 - x0) + (y0 - y1)

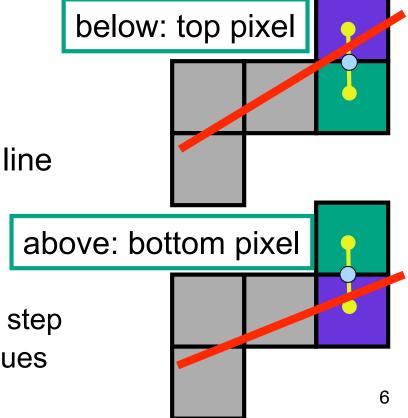
y = y + 1;

d = d + (y0 - y1)

} else {

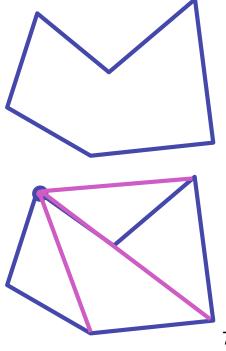
Review/Correction: Midpoint Algorithm

- we're moving horizontally along x direction (first octant)
 - only two choices: draw at current y value, or move up vertically to y+1?
 - check if midpoint between two possible pixel centers above or below line
 - candidates
 - top pixel: (x+1,y+1)
 - bottom pixel: (x+1, y)
 - midpoint: (x+1, y+.5)
- check if midpoint above or below line
 - below: pick top pixel
 - above: pick bottom pixel
- key idea behind Bresenham
 - reuse computation from previous step
 - integer arithmetic by doubling values



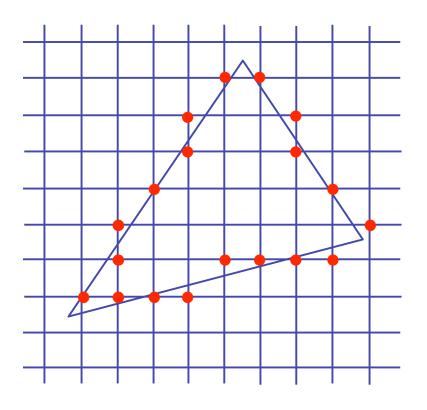
Review: Triangulating Polygons

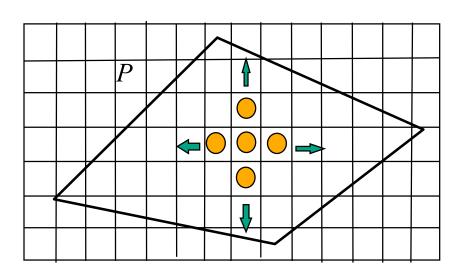
- simple convex polygons
 - trivial to break into triangles
 - · pick one vertex, draw lines to all others not immediately adjacent
 - OpenGL supports automatically
 - glBegin(GL POLYGON) ... glEnd()
- concave or non-simple polygons
 - more effort to break into triangles
 - simple approach may not work
 - OpenGL can support at extra cost
 - gluNewTess(), gluTessCallback(), ...



Review: Flood Fill

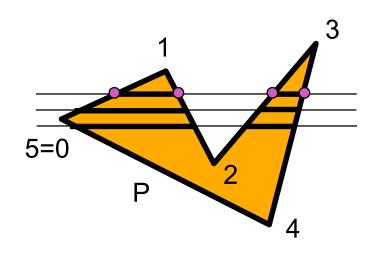
- simple algorithm
 - draw edges of polygon
 - use flood-fill to draw interior

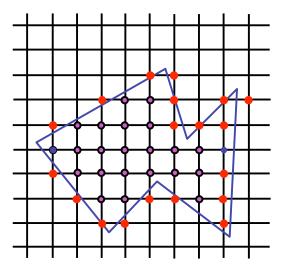


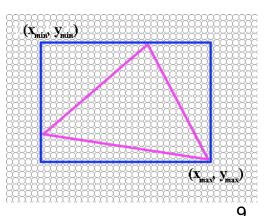


Review: Scanline Algorithms

- scanline: a line of pixels in an image
 - set pixels inside polygon boundary along horizontal lines one pixel apart vertically
 - parity test: draw pixel if edgecount is odd
 - optimization: only loop over axis-aligned bounding box of xmin/xmax, ymin/ymax

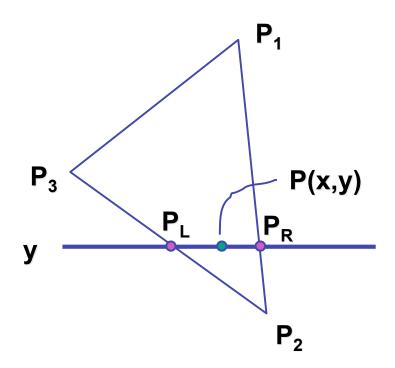






Review: Bilinear Interpolation

- interpolate quantity along L and R edges, as a function of y
 - then interpolate quantity as a function of x



Review: Barycentric Coordinates

- non-orthogonal coordinate system based on triangle itself
 - origin: P₁, basis vectors: (P₂-P₁) and (P₃-P₁)

$$P = P_{1} + \beta(P_{2}-P_{1})+\gamma(P_{3}-P_{1})$$

$$P = (1-\beta-\gamma)P_{1} + \beta P_{2}+\gamma P_{3}$$

$$P = \alpha P_{1} + \beta P_{2}+\gamma P_{3}$$

$$\alpha + \beta + \gamma = 1$$

$$0 <= \alpha, \beta, \gamma <= 1$$

$$\beta = 0$$

$$A + \beta + \gamma = 1$$

Interpolation

Computing Barycentric Coordinates

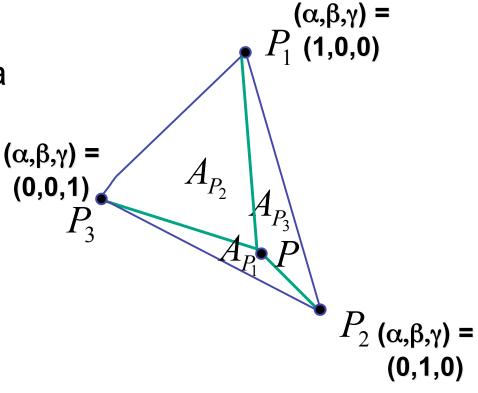
- 2D triangle area
 - half of parallelogram area
 - from cross product

$$A = A_{P1} + A_{P2} + A_{P3}$$

$$\alpha = A_{P1}/A$$

$$\beta = A_{P2}/A$$

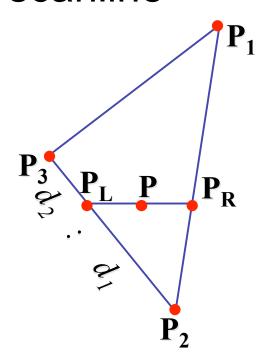
$$\gamma = A_{P3}/A$$



weighted combination of three points [demo]

Deriving Barycentric From Bilinear

from bilinear interpolation of point P on scanline



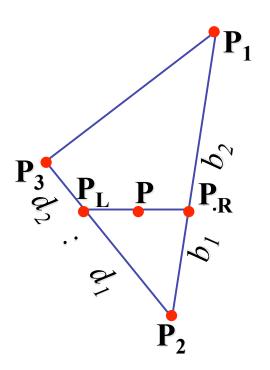
$$P_{L} = P_{2} + \frac{d_{1}}{d_{1} + d_{2}} (P_{3} - P_{2})$$

$$= (1 - \frac{d_{1}}{d_{1} + d_{2}})P_{2} + \frac{d_{1}}{d_{1} + d_{2}} P_{3} =$$

$$= \frac{d_{2}}{d_{1} + d_{2}} P_{2} + \frac{d_{1}}{d_{1} + d_{2}} P_{3}$$

Deriving Barycentric From Bilineaer

similarly



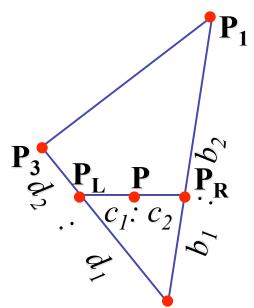
$$P_{R} = P_{2} + \frac{b_{1}}{b_{1} + b_{2}} (P_{1} - P_{2})$$

$$= (1 - \frac{b_{1}}{b_{1} + b_{2}})P_{2} + \frac{b_{1}}{b_{1} + b_{2}} P_{1} =$$

$$= \frac{b_{2}}{b_{1} + b_{2}} P_{2} + \frac{b_{1}}{b_{1} + b_{2}} P_{1}$$

Deriving Barycentric From Bilinear

combining



 $P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R$ $P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3$ $P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1$

• gives P2

$$P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right)$$

Deriving Barycentric From Bilinear

• thus $P = \alpha P_1 + \beta P_2 + \gamma P_3$ with

$$\alpha = \frac{c_1}{c_1 + c_2} \frac{b_1}{b_1 + b_2}$$

$$\beta = \frac{c_2}{c_1 + c_2} \frac{d_2}{d_1 + d_2} + \frac{c_1}{c_1 + c_2} \frac{b_2}{b_1 + b_2}$$

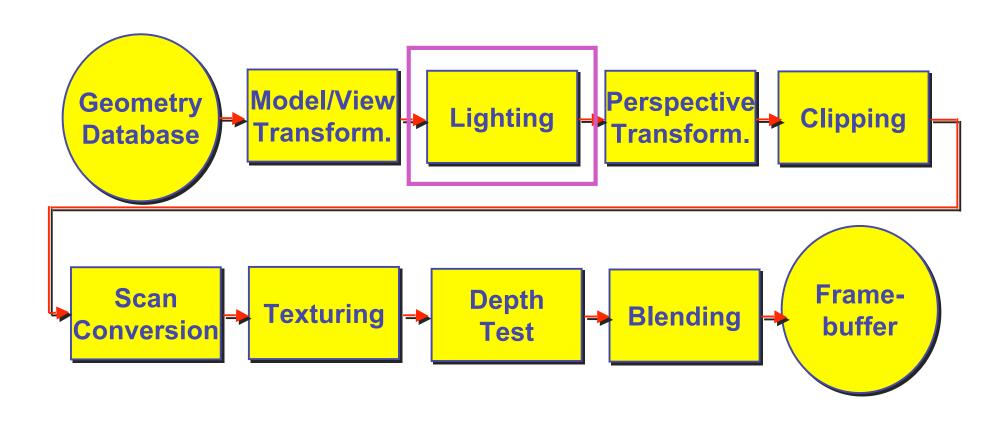
$$\gamma = \frac{c_2}{c_1 + c_2} \frac{d_1}{d_1 + d_2}$$

can verify barycentric properties

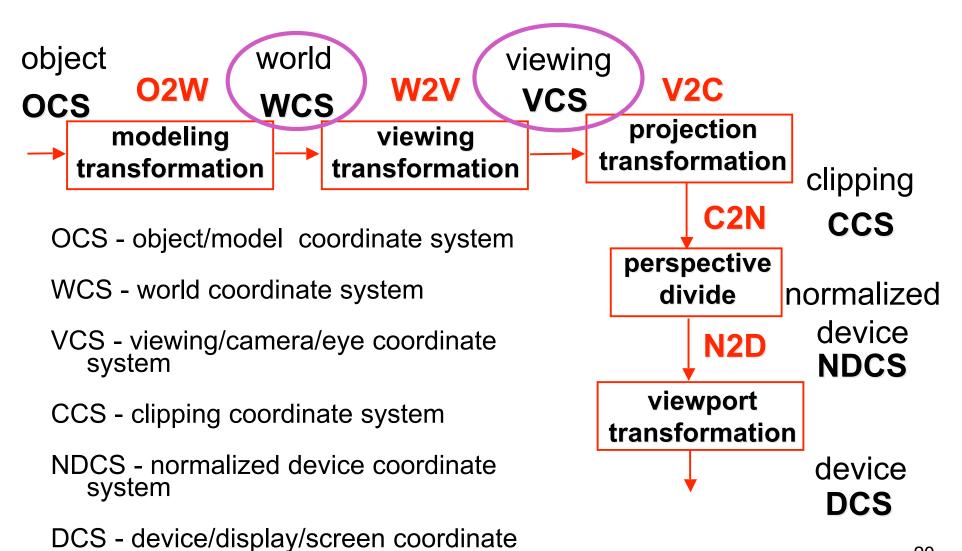
$$\alpha + \beta + \gamma = 1,$$
 $0 \le \alpha, \beta, \gamma \le 1$

Lighting I

Rendering Pipeline



Projective Rendering Pipeline



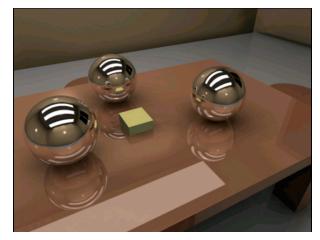
system

Goal

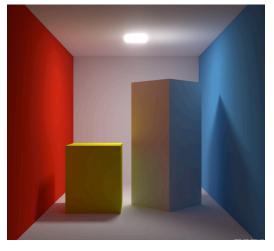
- simulate interaction of light and objects
- fast: fake it!
 - approximate the look, ignore real physics
- get the physics (more) right
 - BRDFs: Bidirectional Reflection Distribution Functions
- local model: interaction of each object with light
- global model: interaction of objects with each other

Photorealistic Illumination

transport of energy from light sources to surfaces & points
global includes direct and indirect illumination – more later



[electricimage.com]

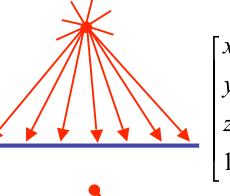


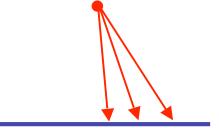
Henrik Wann Jensen

Illumination in the Pipeline

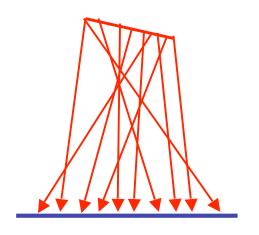
- local illumination
 - only models light arriving directly from light source
 - no interreflections or shadows
 - can be added through tricks, multiple rendering passes
- light sources
 - simple shapes
- materials
 - simple, non-physical reflection models

- types of light sources
 - glLightfv(GL_LIGHT0,GL_POSITION,light[])
 - directional/parallel lights
 - real-life example: sun
 - infinitely far source: homogeneous coord w=0
 - point lights
 - same intensity in all directions
 - spot lights
 - limited set of directions:
 - point+direction+cutoff angle





- area lights
 - light sources with a finite area
 - more realistic model of many light sources
 - not available with projective rendering pipeline (i.e., not available with OpenGL)

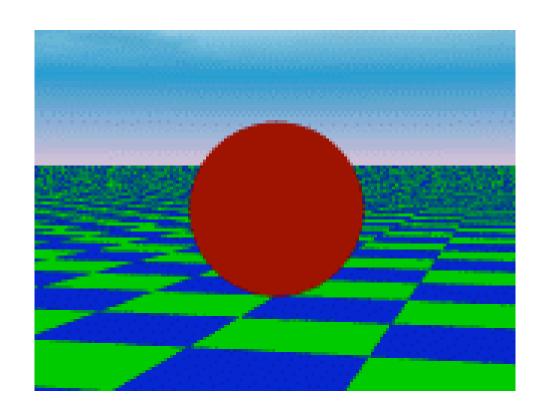


- ambient lights
 - no identifiable source or direction
- hack for replacing true global illumination
 - (diffuse interreflection: light bouncing off from other objects)

Diffuse Interreflection

Ambient Light Sources

scene lit only with an ambient light source



Light Position Not Important

Viewer Position Not Important

Surface Angle Not Important

Directional Light Sources

scene lit with directional and ambient light

Surface Angle Important

Light Position Not Important

Viewer Position Not Important

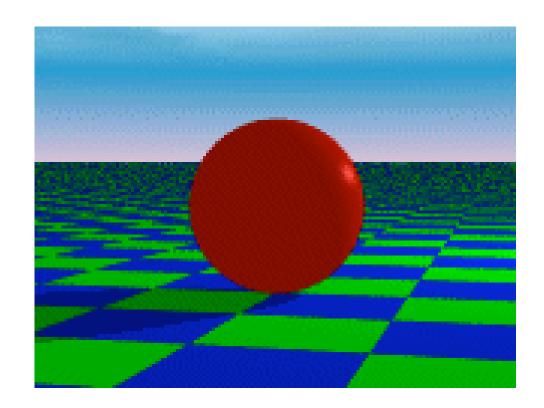
Point Light Sources

scene lit with ambient and point light source

Light Position Important

Viewer Position Important

Surface Angle Important



- geometry: positions and directions
 - standard: world coordinate system
 - effect: lights fixed wrt world geometry
 - demo: http://www.xmission.com/~nate/tutors.html
 - alternative: camera coordinate system
 - effect: lights attached to camera (car headlights)
 - points and directions undergo normal model/view transformation
- illumination calculations: camera coords

Types of Reflection

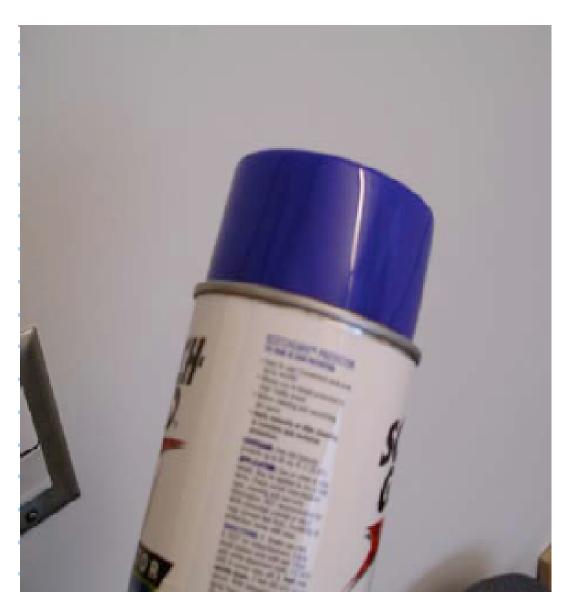
 specular (a.k.a. mirror or regular) reflection causes light to propagate without scattering.

diffuse reflection sends light in all directions with equal energy.

 mixed reflection is a weighted combination of specular and diffuse.



Specular Highlights



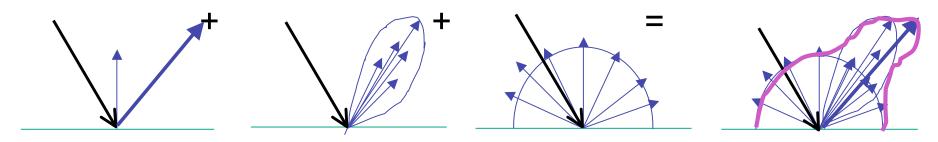
Types of Reflection

 retro-reflection occurs when incident energy reflects in directions close to the incident direction, for a wide range of incident directions.

 gloss is the property of a material surface that involves mixed reflection and is responsible for the mirror like appearance of rough surfaces.

Reflectance Distribution Model

- most surfaces exhibit complex reflectances
 - vary with incident and reflected directions.
 - model with combination



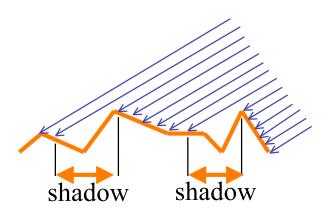
specular + glossy + diffuse =
reflectance distribution

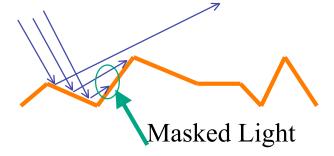
Surface Roughness

 at a microscopic scale, all real surfaces are rough

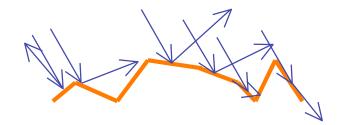
 cast shadows on themselves

"mask" reflected light:





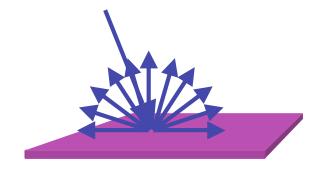
Surface Roughness



- notice another effect of roughness:
 - each "microfacet" is treated as a perfect mirror.
 - incident light reflected in different directions by different facets.
 - end result is mixed reflectance.
 - smoother surfaces are more specular or glossy.
 - random distribution of facet normals results in diffuse reflectance.

Physics of Diffuse Reflection

- ideal diffuse reflection
 - very rough surface at the microscopic level
 - real-world example: chalk
 - microscopic variations mean incoming ray of light equally likely to be reflected in any direction over the hemisphere
 - what does the reflected intensity depend on?



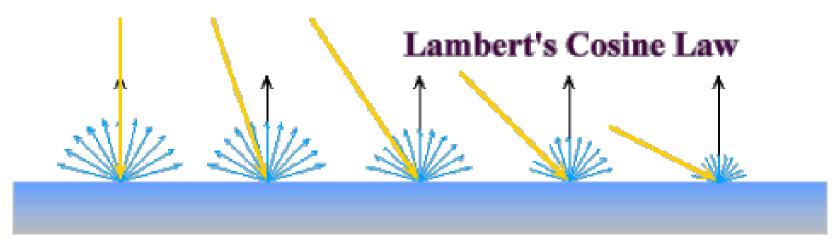
Lambert's Cosine Law

ideal diffuse surface reflection

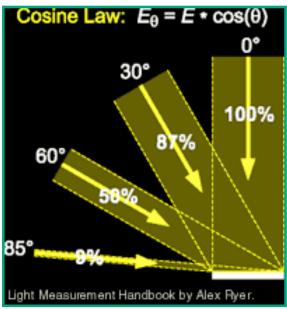
the energy reflected by a small portion of a surface from a light source in a given direction is proportional to the cosine of the angle between that direction and the surface normal

- reflected intensity
 - independent of viewing direction
 - depends on surface orientation wrt light
- often called Lambertian surfaces

Lambert's Law

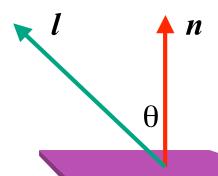


intuitively: cross-sectional area of the "beam" intersecting an element of surface area is smaller for greater angles with the normal.



Computing Diffuse Reflection

- depends on angle of incidence: angle between surface normal and incoming light
 - $I_{diffuse} = k_d I_{light} \cos \theta$
- in practice use vector arithmetic
 - $I_{diffuse} = k_d I_{light} (n \cdot l)$



- always normalize vectors used in lighting!!!
 - n, I should be unit vectors
- scalar (B/W intensity) or 3-tuple or 4-tuple (color)
 - k_d: diffuse coefficient, surface color
 - I_{light}: incoming light intensity
 - I_{diffuse}: outgoing light intensity (for diffuse reflection)

Diffuse Lighting Examples

 Lambertian sphere from several lighting angles:

- need only consider angles from 0° to 90°
 - why?
 - demo: Brown exploratory on reflection
 - http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/reflection2D/reflection_2d_java_browser.html