

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007

Tamara Munzner

Vision/Color

Week 5, Mon Feb 5

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Reading for Today

RB Chap Color

- FCG Sections 3.2-3.3
- FCG Chap 20 Color
- FCG Chap 21 Visual Perception

Reading for Next Time

3

Project 1 Grading News

- don't forget to show up 10 min before your slot
 - see news item on top of course page for signup slot reminders
- signup snafu: 10-11 Wed overlaps with class
 - reschedule if possible

Midterm News

- midterm Friday Feb 9
 - closed book
 - no calculators
 - allowed to have one page of notes
 - handwritten, one side of 8.5x11" sheet
 - this room (DMP 301), 10-10:50
 - material covered
 - transformations, viewing/projection

Review: N2D Transformation

$$\begin{bmatrix} x_D \\ y_D \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \frac{width}{2} - \frac{1}{2} \\ 0 & 1 & 0 & \frac{height}{2} - \frac{1}{2} \\ 0 & 0 & 1 & \frac{depth}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{width}{2} & 0 & 0 & 0 \\ 0 & \frac{height}{2} & 0 & 0 \\ 0 & 0 & \frac{depth}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_N \\ y_N \\ z_N \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{width(x_N + 1) - 1}{2} \\ \frac{height(-y_N + 1) - 1}{2} \\ \frac{depth(z_N + 1)}{2} \\ 1 \end{bmatrix}$$

Review: Perspective Derivation

- shear
- scale
- projection-normalization

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Review: OpenGL Example

Review: Projection Taxonomy

- perspective: projectors converge
 - orthographic, axonometric: projectors parallel and perpendicular to projection plane
 - oblique: projectors parallel, but not perpendicular to projection plane

Vision/Color

RGB Color

- triple (r, g, b) represents colors with amount of red, green, and blue
 - hardware-centric
 - used by OpenGL

Alpha

- fourth component for transparency
 - (r,g,b,α)
- fraction we can see through
 - $c = \alpha c_f + (1-\alpha)c_b$
- more on compositing later

Additive vs. Subtractive Colors

- additive: light
 - monitors, LCDs
 - RGB model
- subtractive: pigment
 - printers
 - CMY model
 - dyes absorb light

Component Color

- component-wise multiplication of colors
 - (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

- why does this work?
 - must dive into light, human vision, color spaces

Electromagnetic Spectrum

White Light

 sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Sunlight Spectrum

spectral distribution: power vs. wavelength

White Light and Color

- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determines what we perceive as the color of the object

Hue

 hue (or simply, "color") is dominant wavelength/frequency

 integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light

- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

Physiology of Vision

the retina

Foveal Vision

hold out your thumb at arm's length

Trichromacy

- three types of cones
 - L or R, most sensitive to red light (610 nm)
 - M or G, most sensitive to green light (560 nm)
 - S or B, most sensitive to blue light (430 nm)

color blindness results from missing cone type(s)

Metamers

 a given perceptual sensation of color derives from the stimulus of all three cone types

- identical perceptions of color can thus be caused by very different spectra
- demo

Color Spaces

 three types of cones suggests color is a 3D quantity. how to define 3D color space?

- idea: perceptually based measurement
 - shine given wavelength (λ) on a screen
 - user must control three pure lights producing three other wavelengths (say R=700nm, G=546nm, and B=436nm)
 - adjust intensity of RGB until colors are identical
 - this works because of metamers!

Negative Lobes

- exact target match with phosphors not possible
 - possible: point red light to shine on target
 - impossible: remove red from CRT phosphors
- can't generate all other wavelenths with any set of three positive monochromatic lights!
- solution: convert to new synthetic coordinate system to make the job easy

CIE Color Space

 CIE defined three "imaginary" lights X, Y, and Z, any wavelength λ can be matched perceptually by positive combinations

Measured vs. CIE Color Spaces

- measured basis
 - monochromatic lights
 - physical observations
 - negative lobes

- transformed basis
 - "imaginary" lights
 - all positive, unit area
 - Y is luminance, no hue
 - X,Z no luminance

CIE and Chromaticity Diagram

- X, Y, Z form 3D shape
- project X, Y, Z on X+Y+Z=1 plane for 2D color space
 - separate color from brightness
 - chromaticity diagram
 - x = X / (X+Y+Z)
 - y = Y / (X+Y+Z)

Device Color Gamuts

- gamut is polygon, device primaries at corners
 - defines reproducible color range
 - X, Y, and Z are hypothetical light sources, no device can produce entire gamut

 $CIE \times$

Display Gamuts

31

Projector Gamuts

RGB Color Space (Color Cube)

- define colors with (r, g, b) amounts of red, green, and blue
 - used by OpenGL
 - hardware-centric

- RGB color cube sits within CIE color space
 - subset of perceivable colors
 - scale, rotate, shear cube

HSV Color Space

Saturation

Custom

Colors

Standa d

Value

OK

- more intuitive color space for people
 - H = Hue
 - S = Saturation
 - V = Value
 - or brightness B
 - or intensity I
 - or lightness L

HSV and **RGB**

- HSV/HSI conversion from RGB
 - not expressible in matrix

$$I = \frac{R + G + B}{3}$$
 $S = 1 - \frac{\min(R + G + B)}{I}$

$$H = \cos^{-1} \left[\frac{\frac{1}{2} [(R - G) + (R - B)]}{\sqrt{(R - G)^2 + (R - B)(G - B)}} \right]$$

YIQ Color Space

- color model used for color TV
 - Y is luminance (same as CIE)

- using Y backwards compatible for B/W TVs
- conversion from RGB is linear

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.30 & 0.59 & 0.11 \\ 0.60 & -0.28 & -0.32 \\ 0.21 & -0.52 & 0.31 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 green is much lighter than red, and red lighter than blue

Luminance vs. Intensity

- luminance
 - Y of YIQ
 - 0.299R + 0.587G + 0.114B
- intensity/brightness
 - I/V/B of HSI/HSV/HSB
 - 0.333R + 0.333G + 0.333B

Opponent Color

- definition
 - achromatic axis
 - R-G and Y-B axis
 - separate lightness from chroma channels
- first level encoding
 - linear combination of LMS
 - before optic nerve
 - basis for perception
 - defines "color blindness"

vischeck.com

simulates color vision deficiencies

Adaptation, Surrounding Color

- color perception is also affected by
 - adaptation (move from sunlight to dark room)
 - surrounding color/intensity:
 - simultaneous contrast effect

Color/Lightness Constancy

Image courtesy of John McCann

Color/Lightness Constancy

Image courtesy of John McCann

Color Constancy

- automatic "white balance" from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception

Stroop Effect

- red
- blue
- orange
- purple
- green

Stroop Effect

- blue
- green
- purple
- red
- orange

interplay between cognition and perception