University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007

Tamara Munzner

Vision/Color

Week 5, Mon Feb 5

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Reading for Today

- RB Chap Color
- FCG Sections 3.2-3.3
- FCG Chap 20 Color
- FCG Chap 21 Visual Perception

Reading for Next Time

Project 1 Grading News

- don't forget to show up 10 min before your slot
- see news item on top of course page for signup slot reminders
- signup snafu: 10-11 Wed overlaps with class
- reschedule if possible

Midterm News

- midterm Friday Feb 9
- closed book
- no calculators
- allowed to have one page of notes
- handwritten, one side of 8.5×11 " sheet
- this room (DMP 301), 10-10:50
- material covered
- transformations, viewing/projection

Review: N2D Transformation

$$
\left[\begin{array}{c}
x_{D} \\
y_{D} \\
z_{D} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & \frac{\text { width }}{2}-\frac{1}{2} \\
0 & 1 & 0 & \frac{\text { height }}{2}-\frac{1}{2} \\
0 & 0 & 1 & \frac{\text { depth }}{2} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{\text { width }}{2} & 0 & 0 & 0 \\
0 & \frac{\text { height }}{2} & 0 & 0 \\
0 & 0 & \frac{\text { depth }}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{N} \\
y_{N} \\
z_{N} \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{\text { width }\left(x_{N}+1\right)-1}{2} \\
\frac{\text { height }\left(-y_{N}+1\right)-1}{2} \\
\frac{\operatorname{depth}\left(z_{N}+1\right)}{2} \\
1
\end{array}\right]
$$

Review: Perspective Derivation

- shear
- scale
- projection-normalization

$$
\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

NDCS

Review: OpenGL Example

object $\begin{array}{ccc}\begin{array}{c}\text { world } \\ \text { WCS }\end{array} & \text { W2V } & \text { viewing } \\ \text { VCS }\end{array}$ V2C
clipping cCS
CCS
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective (45, 1.0, 0.1, 200.0);
VCS glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
glTranslatef ($0.0,0.0,-5.0$) ; - transformations that
WCS glPushMatrix()
glTranslate (4, 4, 0) ; W2O
OCS1 glutSolidTeapot(1);
glPopMatrix();
glTranslate (2, 2, 0); W2O
OCS2 glutSolidTeapot(1);

Review: Projection Taxonomy

Vision/Color

RGB Color

- triple (r, g, b) represents colors with amount of red, green, and blue
- hardware-centric
- used by OpenGL

Alpha

- fourth component for transparency
- (r,g,b, α)
- fraction we can see through
- $c=\alpha c_{f}+(1-\alpha) c_{b}$
- more on compositing later

Additive vs. Subtractive Colors

- additive: light
- monitors, LCDs
- RGB model
- subtractive: pigment

$$
\left[\begin{array}{c}
C \\
M \\
Y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- printers
- CMY model
- dyes absorb light

additive

subtractive

Component Color

- component-wise multiplication of colors
- (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

- must dive into light, human vision, color spaces

Electromagnetic Spectrum

White Light

- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Sunlight Spectrum

- spectral distribution: power vs. wavelength

Electromagnetic Spectrum

White Light and Color

- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determines what we perceive as the color of the object

Hue

- hue (or simply, "color") is dominant wavelength/frequency

- integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light

- how washed out or how pure the color of the light appears
- contribution of dominant light vs. other frequencies producing white light
- saturation: how far is color from grey
- pink is less saturated than red
- sky blue is less saturated than royal blue

Physiology of Vision

- the retina
- rods
- b/w, edges
- cones
- 3 types
- color sensors
- uneven distribution
- dense fovea

Foveal Vision

- hold out your thumb at arm's length

Trichromacy

- three types of cones
- L or R, most sensitive to red light (610 nm)
- M or G, most sensitive to green light (560 nm)
- S or B, most sensitive to blue light (430 nm)

- color blindness results from missing cone type(s)

Metamers

- a given perceptual sensation of color derives from the stimulus of all three cone types

- identical perceptions of color can thus be caused by very different spectra
- demo
http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

Color Spaces

- three types of cones suggests color is a 3D quantity. how to define 3D color space?

- idea: perceptually based measurement
- shine given wavelength (λ) on a screen
- user must control three pure lights producing three other wavelengths (say $R=700 \mathrm{~nm}$, $G=546 \mathrm{~nm}$, and $B=436 \mathrm{~nm}$)
- adjust intensity of RGB until colors are identical
- this works because of metamers!

Negative Lobes

Wavelength (inimi)

- exact target match with phosphors not possible
- possible: point red light to shine on target
- impossible: remove red from CRT phosphors
- can't generate all other wavelenths with any set of three positive monochromatic lights!
- solution: convert to new synthetic coordinate system to make the job easy

CIE Color Space

- CIE defined three "imaginary" lights X, Y, and Z, any wavelength λ can be matched perceptually by positive combinations

Note that:
$X \sim R$
$Y \sim G$
$Z \sim B$

Measured vs. CIE Color Spaces

- measured basis
- monochromatic lights
- physical observations
- negative lobes

- transformed basis
- "imaginary" lights
- all positive, unit area
- Y is luminance, no hue
- X,Z no luminance

CIE and Chromaticity Diagram

- X, Y, Z form 3D shape
- project X, Y, Z on $X+Y+Z=1$ plane for 2D color space
- separate color from brightness
- chromaticity diagram
- $x=X /(X+Y+Z)$
- $y=Y /(X+Y+Z)$

Device Color Gamuts

- gamut is polygon, device primaries at corners
- defines reproducible color range
- X, Y, and Z are hypothetical light sources, no device can produce entire gamut

Display Gamuts

From A Field Guide to Digital Color, © A.K. Peters, 2003

Projector Gamuts

From A Field Guide to Digital Color, © A.K. Peters, 2003

RGB Color Space (Color Cube)

- define colors with (r,g, b) amounts of red, green, and blue
- used by OpenGL
- hardware-centric
- RGB color cube sits within CIE color space
- subset of perceivable colors
- scale, rotate, shear cube

HSV Color Space

- more intuitive color space for people
- H = Hue
- $S=$ Saturation
- V = Value
- or brightness B
- or intensity I
- or lightness L

HSV and RGB

- HSV/HSI conversion from RGB
- not expressible in matrix

$$
\begin{aligned}
& I=\frac{R+G+B}{3} \quad S=1-\frac{\min (R+G+B)}{I} \\
& H=\cos ^{-1}\left[\frac{\frac{1}{2}[(R-G)+(R-B)]}{\sqrt{(R-G)^{2}+(R-B)(G-B)}}\right]
\end{aligned}
$$

YIQ Color Space

- color model used for color TV
- Y is luminance (same as CIE)
- I \& Q are color (not same I as HSI!)
- using Y backwards compatible for B/W TVs
- conversion from RGB is linear

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- green is much lighter than red, and red lighter than blue

Luminance vs. Intensity

- luminance
- Y of YIQ
- $0.299 \mathrm{R}+0.587 \mathrm{G}+0.114 \mathrm{~B}$
- I/V/B of HSI/HSV/HSB
- $0.333 \mathrm{R}+0.333 \mathrm{G}+0.333 \mathrm{~B}$
(a) Colour Image

(b) Intensity Image

Opponent Color

- definition
- achromatic axis
- R-G and Y-B axis
- separate lightness from chroma channels
- first level encoding
- linear combination of LMS
- before optic nerve
- basis for perception
- defines "color blindness"

vischeck.com

- simulates color vision deficiencies

Normal vision

Protanope

Adaptation, Surrounding Color

- color perception is also affected by
- adaptation (move from sunlight to dark room)
- surrounding color/intensity:
- simultaneous contrast effect

Color/Lightness Constancy

Image courtesy of John McCann

Color/Lightness Constancy

Image courtesy of John McCann

Color Constancy

- automatic "white balance" from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception

From Color Appearance Models, fig 8-1

Stroop Effect

- red
- blue
- orange
- purple
- green

Stroop Effect

- blue
- green
- purple
- red
- orange
- interplay between cognition and perception

