University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007

Tamara Munzner

Viewing/Projections I

Week 3, Fri Jan 24
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Reading for This and Next 2 Lectures

- FCG Chapter 7 Viewing
- FCG Section 6.3.1 Windowing Transforms
- RB rest of Chap Viewing
- RB rest of App Homogeneous Coords

Review: Display Lists

- precompile/cache block of OpenGL code for reuse
- usually more efficient than immediate mode
- exact optimizations depend on driver
- good for multiple instances of same object
- but cannot change contents, not parametrizable
- good for static objects redrawn often
- display lists persist across multiple frames
- interactive graphics: objects redrawn every frame from new viewpoint from moving camera
- can be nested hierarchically
- snowman example: 3x performance improvement, 36K polys

Review: Normals

- polygon:

$$
N=\left(P_{2}-P_{1}\right) \times\left(P_{3}-P_{1}\right)
$$

- assume vertices ordered CCW when viewed from visible side of polygon
- normal for a vertex
- specify polygon orientation
- used for lighting
- supplied by model (i.e., sphere),
 or computed from neighboring polygons

Review: Transforming Normals

- cannot transform normals using same matrix as points

- nonuniform scaling would cause to be not perpendicular to desired plane!

$$
\begin{aligned}
& P \\
& N
\end{aligned} \longrightarrow \begin{aligned}
& P^{\prime}=M P \\
& N^{\prime}=Q N
\end{aligned}
$$

given M,
what should \mathbf{Q} be?

$$
\mathbf{Q}=\left(\mathbf{M}^{-1}\right)^{\mathbf{T}}
$$

inverse transpose of the modelling transformation

Viewing

Using Transformations

- three ways
- modelling transforms
- place objects within scene (shared world)
- affine transformations
- viewing transforms
- place camera
- rigid body transformations: rotate, translate
- projection transforms
- change type of camera
- projective transformation

Rendering Pipeline

Rendering Pipeline

- result

- all vertices of scene in shared 3D world coordinate system

Rendering Pipeline

- result

- scene vertices in 3D view (camera) coordinate system

Rendering Pipeline

- result

- 2D screen coordinates of clipped vertices

Viewing and Projection

- need to get from 3D world to 2D image
- projection: geometric abstraction
- what eyes or cameras do
- two pieces
- viewing transform:
- where is the camera, what is it pointing at?
- perspective transform: 3D to 2D
- flatten to image

Rendering Pipeline

Rendering Pipeline

OpenGL Transformation Storage

- modeling and viewing stored together
- possible because no intervening operations
- perspective stored in separate matrix
- specify which matrix is target of operations
- common practice: return to default modelview mode after doing projection operations glMatrixMode (GL_MODELVIEW) ; glMatrixMode (GL_PROJECTION) ;

Coordinate Systems

- result of a transformation
- names
- convenience
- armadillo: leg, head, tail
- standard conventions in graphics pipeline
- object/modelling
- world
- camera/viewing/eye
- screen/window
- raster/device

Projective Rendering Pipeline

Viewing Transformation

OpenGL ModelView matrix

Basic Viewing

- starting spot - OpenGL
- camera at world origin
- probably inside an object
- y axis is up
- looking down negative z axis
- why? RHS with x horizontal, y vertical, z out of screen
- translate backward so scene is visible
- move distance d = focal length
- can use rotate/translate/scale to move camera
- demo: Nate Robins tutorial transformations

Viewing in Project 1

- where is camera in template code?
- 5 units back, looking down -z axis

Convenient Camera Motion

- rotate/translate/scale not intuitive
- arbitrary viewing position
- eye point, gaze/lookat direction, up vector

Convenient Camera Motion

- rotate/translate/scale not intuitive
- arbitrary viewing position
- eye point, gaze/lookat direction, up vector

From World to View Coordinates: W2V

- translate eye to origin
- rotate view vector (lookat - eye) to w axis
- rotate around \mathbf{w} to bring up into vw-plane

OpenGL Viewing Transformation

gluLookAt(ex,ey,ez,lx,ly,lz,ux,uy,uz)

- postmultiplies current matrix, so to be safe:
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();
gluLookAt (ex,ey,ez,lx,ly,lz,ux,uy,uz)
// now ok to do model transformations
- demo: Nate Robins tutorial projection

Deriving W2V Transformation

- translate eye to origin $\mathbf{T}=\left[\begin{array}{cccc}1 & 0 & 0 & -e_{x} \\ 0 & 1 & 0 & -e_{y} \\ 0 & 0 & 1 & -e_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$

Deriving W2V Transformation

- rotate view vector (lookat - eye) to w axis
- w: normalized opposite of view/gaze vector \mathbf{g}

$$
\mathbf{W}=-\hat{\mathbf{g}}=-\frac{\mathbf{g}}{\|\mathbf{g}\|}
$$

Deriving W2V Transformation

- rotate around \mathbf{w} to bring up into vw-plane
- u should be perpendicular to vw-plane, thus perpendicular to \mathbf{w} and up vector \mathbf{t}
- \mathbf{v} should be perpendicular to \mathbf{u} and \mathbf{w}

Deriving W2V Transformation

- rotate from WCS xyz into uvw coordinate system with matrix that has rows $\mathbf{u}, \mathbf{v}, \mathbf{w}$

$$
\begin{array}{lc}
\mathbf{u}=\frac{\mathbf{t} \times \mathbf{W}}{\|\mathbf{t} \times \mathbf{W}\|} & \mathbf{v}=\mathbf{w} \times \mathbf{u}
\end{array} \quad \mathbf{w}=-\hat{\mathbf{g}}=-\frac{\mathbf{g}}{\|\mathbf{g}\|}
$$

- reminder: rotate from uvw to $\mathbf{x y z}$ coord sys with matrix \mathbf{M} that has columns $\mathbf{u}, \mathbf{v}, \mathbf{w}$
- rotate from xyz coord sys to uvw coord sys with matrix \mathbf{M}^{\top} that has rows $\mathbf{u}, \mathbf{v}, \mathbf{w}$

Deriving W2V Transformation

- $\mathbf{M}=\mathrm{R} \mathbf{T} \quad \mathbf{R}=\left[\begin{array}{cccc}u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ w_{x} & w_{y} & w_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \mathbf{T}=\left[\begin{array}{cccc}1 & 0 & 0 & -e_{x} \\ 0 & 1 & 0 & -e_{y} \\ 0 & 0 & 1 & -e_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathbf{M}_{\text {world-> view }}=\left[\begin{array}{cccc}u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ w_{x} & w_{y} & w_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & -e_{x} \\ 0 & 1 & 0 & -e_{y} \\ 0 & 0 & 1 & -e_{z} \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}u_{x} & u_{y} & u_{z} & -\mathbf{u} \cdot \mathbf{e} \\ v_{x} & v_{y} & v_{z} & -\mathbf{v} \cdot \mathbf{e} \\ w_{x} & w_{y} & w_{z} & -\mathbf{w} \cdot \mathbf{e} \\ 0 & 0 & 0 & 1\end{array}\right]$

Moving the Camera or the World?

- two equivalent operations
- move camera one way vs. move world other way
- example
- initial OpenGL camera: at origin, looking along -z axis
- create a unit square parallel to camera at $z=-10$
- translate in z by 3 possible in two ways
- camera moves to $z=-3$
- Note OpenGL models viewing in left-hand coordinates
- camera stays put, but world moves to -7
- resulting image same either way
- possible difference: are lights specified in world or view coordinates?

World vs. Camera Coordinates

$$
\begin{aligned}
& \mathrm{a}=(1,1)_{\mathrm{w}} \\
& \mathrm{~b}=(1,1)_{\mathrm{c} 1}=(5,3)_{\mathrm{w}} \\
& \mathrm{c}=(1,1)_{\mathrm{c} 2}=(1,3)_{\mathrm{c} 1}=(5,5)_{\mathrm{w}}
\end{aligned}
$$

