University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2007

Tamara Munzner

Curves

Week 12, Wed Apr 4

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Old News

- extra TA office hours in lab for hw/project Q\&A
- next week: Thu 4-6, Fri 10-2
- last week of classes:
- Mon 2-5, Tue 4-6, Wed 2-4, Thu 4-6, Fri 9-6
- final review Q\&A session
- Mon Apr 16 10-12
- reminder: no lecture/labs Fri 4/6, Mon 4/9

Old News

- project 4 grading slots signup
- Wed Apr 18 10-12
- Wed Apr 18 4-6
- Fri Apr 20 10-1

Reminder for H4

- For any answer involving calculation, although it's fine to show your work in analytical form, the final answer should be expressed as a number to two decimal places.

News

- regraded homeworks/exams handed back
- midterm handed back (scores are scaled)

Midterm 2 Scaled Grades

Review: Compositing

Correction/Review: Premultiplying Colors

- specify opacity with alpha channel: (r, g, b, α)
- $\alpha=1$: opaque, $\alpha=.5$: translucent, $\alpha=0$: transparent
- A over B
- $\mathbf{C}=\alpha \mathbf{A}+(1-\alpha) \mathbf{B}$
- but what if \mathbf{B} is also partially transparent?
- $\mathbf{C}=\alpha \mathbf{A}+(1-\alpha) \beta \mathbf{B}=\beta \mathbf{B}+\alpha \mathbf{A}+{ }^{2} \mathbf{B} \mathbf{B}-\alpha \beta \mathbf{B}$
- $\gamma=\beta+(1-\beta) \alpha=\beta+\alpha-\alpha \beta$
- 3 multiplies, different equations for alpha vs. RGB
- premultiplying by alpha
- $\mathbf{C}^{\prime}=\gamma \mathbf{C}, \mathbf{B}^{\prime}=\beta \mathbf{B}, \mathbf{A}^{\prime}=\alpha \mathbf{A}$
- $\mathbf{C}^{\prime}=\mathbf{B}^{\prime}+\mathbf{A}^{\prime}-\alpha \mathbf{B}^{\prime}$
- $\gamma=\beta+\alpha-\alpha \beta$
- 1 multiply to find C, same equations for alpha and RGB

Review: Rendering Pipeline

- so far rendering pipeline as a specific set of stages with fixed functionality
- modern graphics hardware more flexible
- programmable "vertex shaders" replace several geometry processing stages
- programmable "fragment/pixel shaders" replace texture mapping stage
- hardware with these features now called Graphics Processing Unit (GPU)
- program shading hardware with assembly language analog, or high level shading language

Review: Vertex Shaders

- replace model/view transformation, lighting, perspective projection
- a little assembly-style program is executed on every individual vertex independently
- it sees:
- vertex attributes that change per vertex:
- position, color, texture coordinates...
- registers that are constant for all vertices (changes are expensive):
- matrices, light position and color, ...
- temporary registers
- output registers for position, color, tex coords...

Review: Skinning Vertex Shader

- arm example:
- M1: matrix for upper arm
- M2: matrix for lower arm

Review: Fragment Shaders

- fragment shaders operate on fragments in place of texturing hardware
- after rasterization
- before any fragment tests or blending
- input: fragment, with screen position, depth, color, and set of texture coordinates
- access to textures, some constant data, registers
- compute RGBA values for fragment, and depth
- can also kill a fragment (throw it away)

Review: GPGPU Programming

- General Purpose GPU
- use graphics card as SIMD parallel processor
- textures as arrays
- computation: render large quadrilateral
- multiple rendering passes

Curves

Reading

- FCG Chap 13 Curves

Parametric Curves

- parametric form for a line:

$$
\begin{aligned}
& x=x_{0} t+(1-t) x_{1} \\
& y=y_{0} t+(1-t) y_{1} \\
& z=z_{0} t+(1-t) z_{1}
\end{aligned}
$$

- x, y and z are each given by an equation that involves:
- parameter t
- some user specified control points, x_{0} and x_{1}
- this is an example of a parametric curve

Splines

- a spline is a parametric curve defined by control points
- term "spline" dates from engineering drawing, where a spline was a piece of flexible wood used to draw smooth curves
- control points are adjusted by the user to control shape of curve

Splines - History

- draftsman used 'ducks' and strips of wood (splines) to draw curves
- wood splines have secondorder continuity, pass through the control points

Hermite Spline

- hermite spline is curve for which user provides:
- endpoints of curve
- parametric derivatives of curve at endpoints
- parametric derivatives are $d x / d t, d y / d t, d z / d t$
- more derivatives would be required for higher order curves

Basis Functions

- a point on a Hermite curve is obtained by multiplying each control point by some function and summing
- functions are called basis functions

Sample Hermite Curves

Bézier Curves

- similar to Hermite, but more intuitive definition of endpoint derivatives
- four control points, two of which are knots

Bézier Curves

- derivative values of Bezier curve at knots dependent on adjacent points

$$
\begin{aligned}
& \nabla p_{1}=3\left(p_{2}-p_{1}\right) \\
& \nabla p_{4}=3\left(p_{4}-p_{3}\right)
\end{aligned}
$$

Bézier Blending Functions

- look at blending functions
- family of polynomials called order-3 Bernstein polynomials

$$
p(t)=\left[\begin{array}{c}
(1-t)^{3} \\
3 t(1-t)^{2} \\
3 t^{2}(1-t) \\
t^{3}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right]
$$

Bézier Blending Functions

- every point on curve is linear combination of control points
- weights of combination are all positive
- sum of weights is 1
- therefore, curve is a convex combination of the control points

Bézier Curves

- curve will always remain within convex hull (bounding region) defined by control points

Bézier Curves

- interpolate between first, last control points
- $1^{\text {st }}$ point's tangent along line joining $1^{\text {st }}, 2^{\text {nd }}$ pts
- $4^{\text {th }}$ point's tangent along line joining $3^{\text {rd }}, 4^{\text {th }}$ pts

Comparing Hermite and Bézier Hermite
 Bézier

(a)

(b)

(d)

(e)

Rendering Bezier Curves: Simple

- evaluate curve at fixed set of parameter values, join points with straight lines
- advantage: very simple
- disadvantages:
- expensive to evaluate the curve at many points
- no easy way of knowing how fine to sample points, and maybe sampling rate must be different along curve
- no easy way to adapt: hard to measure deviation of line segment from exact curve

Rendering Beziers: Subdivision

- a cubic Bezier curve can be broken into two shorter cubic Bezier curves that exactly cover original curve
- suggests a rendering algorithm:
- keep breaking curve into sub-curves
- stop when control points of each sub-curve are nearly collinear
- draw the control polygon: polygon formed by control points

Sub-Dividing Bezier Curves

- step 1: find the midpoints of the lines joining the original control vertices. call them M_{01}, M_{12}, M_{23}

Sub-Dividing Bezier Curves

- step 2: find the midpoints of the lines joining M_{01}, M_{12} and M_{12}, M_{23}. call them M_{012}, M_{123}

Sub-Dividing Bezier Curves

- step 3: find the midpoint of the line joining M_{012}, M_{123}. call it M_{0123}

Sub-Dividing Bezier Curves

- curve $P_{0}, M_{01}, M_{012}, M_{0123}$ exactly follows original from $t=0$ to $t=0.5$
- curve $M_{0123}, M_{123}, M_{23}, P_{3}$ exactly follows original from $t=0.5$ to $t=1$

Sub-Dividing Bezier Curves

- continue process to create smooth curve

de Casteljau's Algorithm

- can find the point on a Bezier curve for any parameter value t with similar algorithm
- for $t=0.25$, instead of taking midpoints take points 0.25 of the way

demo: www.saltire.com/applets/advanced geometry/spline/spline.htm

Longer Curves

- a single cubic Bezier or Hermite curve can only capture a small class of curves
- at most 2 inflection points
- one solution is to raise the degree
- allows more control, at the expense of more control points and higher degree polynomials
- control is not local, one control point influences entire curve
- better solution is to join pieces of cubic curve together into piecewise cubic curves
- total curve can be broken into pieces, each of which is cubic
- local control: each control point only influences a limited part of the curve
- interaction and design is much easier

Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

Continuity

- when two curves joined, typically want some degree of continuity across knot boundary
- C0, "C-zero", point-wise continuous, curves share same point where they join
- C1, "C-one", continuous derivatives
- C2, "C-two", continuous second derivatives

$\mathrm{C}_{0} \& \mathrm{C}_{1}$ continuity
$\mathrm{C}_{0} \& \mathrm{C}_{1} \& \mathrm{C}_{2}$ continuity

Geometric Continuity

- derivative continuity is important for animation
- if object moves along curve with constant parametric speed, should be no sudden jump at knots
- for other applications, tangent continuity suffices
- requires that the tangents point in the same direction
- referred to as G^{1} geometric continuity
- curves could be made C^{1} with a re-parameterization
- geometric version of C^{2} is G^{2}, based on curves having the same radius of curvature across the knot

Achieving Continuity

- Hermite curves
- user specifies derivatives, so C^{1} by sharing points and derivatives across knot
- Bezier curves
- they interpolate endpoints, so C^{0} by sharing control pts
- introduce additional constraints to get C^{1}
- parametric derivative is a constant multiple of vector joining first/last 2 control points
- so C^{1} achieved by setting $P_{0,3}=P_{1,0}=J$, and making $P_{0,2}$ and J and $P_{1,1}$ collinear, with $J-P_{0,2}=P_{1,1}-J$
- C^{2} comes from further constraints on $P_{0,1}$ and $P_{1,2}$
- leads to...

B-Spline Curve

- start with a sequence of control points
- select four from middle of sequence
$\left(p_{i-2}, p_{i-1}, p_{i}, p_{i+1}\right)$
- Bezier and Hermite goes between p_{i-2} and p_{i+1}
- B-Spline doesn't interpolate (touch) any of them but approximates the going through p_{i-1} and p_{i}

B-Spline

- by far the most popular spline used
- $\mathrm{C}_{0}, \mathrm{C}_{1}$, and C_{2} continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html

B-Spline

- locality of points

Figure 10-41

Local modification of a B-spline curve. Changing one of the control points in (a) produces curve (b), which is modified only in the neighborhood of the altered control point.

