University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Picking ll, Collision and Accelleration

Week 10, Fri Mar 23
http://www.ugrad.cs.ubc.ca/~cs314/Vian2007




News

» showing up for your project grading slot is not
optional
« 2% penalty for noshows
* signing up for your project grading slot is not
optional
+ 2% penalty for nosignups within two days of due date

* your responsibility to sign up for slot
* not ours to hunt you down if you chose to skip class on
signup day
- we do make best effort to accomodate change
requests via email to grader for that project



News

* project 4 proposals due today 3pm
* handin cs314 proj3.prop
* Or on paper in box

 proposal: your chance to get feedback from me

« don’t wait to hear back from me to get started
 you'll hear from me soon if | see something dubious

* not a contract, can change as you go



Midterm 2: Wed Mar 26

 covering through Homework 3 material
« MT1: transformations, some viewing

« MT2 emphasis
* some viewing
* projections
* color
* rasterization
* lighting/shading
 advanced rendering (incl raytracing)
» graded H3 + solutions out Monday



Midterm 2: Wed Mar 26

e closed book

 allowed to have
* calculator

* one side of 8.5°x11” paper, handwritten
 write your name on it
* turn it in with exam, you'll get it back

* have ID out and face up



Review: Language-Based Generation

» L-Systems
* F: forward, R: right, L: left

« Koch snowflake:
F = FLFRRFLF

 Mariano’s Bush:
F=FF-[-F+F+F]+[+F-F-F]
* angle 16

Initiator

,f' 't., Generator

POk
S T

Length=1

Length=4/3

Lewvel 2
Length=16/9

Level 3
Length=64 IE?|




Review: Fractal Terrain

* 1D: midpoint displacement /\

* divide in half, randomly displace —
- scale variance by half - o

« 2D: diamond-square /\

* generate new value at midpoint K}
* average corner values + random displacement

* scale variance by half each time

N A

http://www.gameprogrammer.com/fractal.html

e

T




Review: Particle Systems

* changeable/fluid stuff

* fire, steam, smoke, water, grass, hair, dust,
waterfalls, fireworks, explosions, flocks

* |ife cycle
* generation, dynamics, death
* rendering tricks
 avoid hidden surface computations



Review: Picking Methods

* manual ray intersection

* bounding extents

 backbuffer coding

. ’ _ \
9




Picking I

10



Select/Hit

use small region around cursor for viewport
assign per-object integer keys (names)
redraw in special mode

store hit list of objects in region

examine hit list

OpenGL support

11



Viewport

» small rectangle around cursor
» change coord sys so fills viewport

* why rectangle instead of point?

» people aren’t great at positioning mouse

* Fitts’ Law: time to acquire a target is
function of the distance to and size of the

target

» allow several pixels of slop

12



Viewport

* nontrivial to compute

* invert viewport matrix, set up new orthogonal

projection
 simple utility command

* gluPickMatrix(x,y,w,h,viewport)
* X,Yy: cursor point

@

* w,h: sensitivity/slop (in pixels)
» push old setup first, so can pop it later

13



Render Modes

* glRenderMode(mode)

- GL_RENDER: normal color buffer
* default

« GL _SELECT: selection mode for picking

* (GL_FEEDBACK: report objects drawn)

14



Name Stack

* again, "names" are just integers
glinitNames()

* flat list

glLoadName(name)

 or hierarchy supported by stack

glPushName(name), glPopName
» can have multiple names per object

15



Hierarchical Names Example

for(inti=0;i < 2; i++){
glPushName(i);
for(intj=0;j<2;j++) {
glPushMatrix();
glPushName());
glTranslatef(i*10.0,0,j * 10.0);
glPushName(HEAD);
glCallList(snowManHeadDL);
glLoadName(BODY);
glCallList(snowManBodyDL),
glPopName();
glPopName();
glPopMatrix();

}
glPopName();

}
http://www.lighthouse3d.com/opengl/picking/



Hit List

+ glSelectBuffer(buffersize, *buffer)
* where to store hit list data

* on hit, copy entire contents of name stack to output
buffer.

* hit record
 number of names on stack

* minimum and minimum depth of object vertices
* depth lies in the z-buffer range [0,1]
* multiplied by 2*32 -1 then rounded to nearest int

17



Integrated vs. Separate Pick Function

* integrate: use same function to draw and pick
* simpler to code
* name stack commands ignored in render mode
» separate: customize functions for each
» potentially more efficient
 can avoid drawing unpickable objects

18



Select/Hit

* advantages

- faster
* OpenGL support means hardware acceleration
 avoid shading overhead

* flexible precision
* size of region controllable

» flexible architecture
 custom code possible, e.g. guaranteed frame rate
- disadvantages
* more complex

19



Hybrid Picking

* select/hit approach: fast, coarse
* object-level granularity
- manual ray intersection: slow, precise
* exact intersection point
* hybrid: both speed and precision
» use select/hit to find object
* then intersect ray with that object

20



OpenGL Precision Picking Hints

* gluUnproject
* transform window coordinates to object coordinates
given current projection and modelview matrices
* use to create ray into scene from cursor location

« call gluUnProject twice with same (x,y) mouse
location

* Z = near: (x,y,0)
- z =far: (x,y,1)

* subtract near result from far result to get direction
vector for ray

* use this ray for line/polygon intersection

21



Picking and P4

* you must implement true 3D picking!

* you will not get credit if you just use 2D
information

22



Collision/Acceleration

23



Collision Detection

» do objects collide/intersect?
- static, dynamic

* picking is simple special case of general
collision detection problem

* check if ray cast from cursor position collides
with any object in scene

» simple shooting
* projectile arrives instantly, zero travel time
* better: projectile and target move over time
» see if collides with object during trajectory

24



Collision Detection Applications

determining if player hit wall/floor/obstacle
* terrain following (floor), maze games (walls)
- stop them walking through it
determining if projectile has hit target
determining if player has hit target
« punch/kick (desired), car crash (not desired)
detecting points at which behavior should change
 car in the air returning to the ground
cleaning up animation

* making sure a motion-captured character’s feet do not pass
through the floor

simulating motion
« physics, or cloth, or something else

25



From Simple to Complex

* boundary check
 perimeter of world vs. viewpoint or objects
« 2D/3D absolute coordinates for bounds
 simple point in space for viewpoint/objects
 set of fixed barriers
- walls in maze game
« 2D/3D absolute coordinate system
« set of moveable objects
* one object against set of items
* missile vs. several tanks
* multiple objects against each other

* punching game: arms and legs of players
* room of bouncing balls

26



Naive General Collision Detection

» for each object i containing polygons p
* test for intersection with object j containing
polygons g
* for polyhedral objects, test if object i
penetrates surface of j

* test if vertices of i/ straddle polygon q of j
- if straddle, then test intersection of polygon q
with polygon p of object i

« very expensive! O(n?)

27



Fundamental Design Principles

fast simple tests first, eliminate many potential
collisions

* test bounding volumes before testing individual
triangles

exploit locality, eliminate many potential collisions
 use cell structures to avoid considering distant objects

use as much information as possible about geometry

* spheres have special properties that speed collision
testing

exploit coherence between successive tests

* things don't typically change much between two
frames 28



Example: Player-Wall Collisions

* first person games must prevent the player
from walking through walls and other
obstacles

* most general case: player and walls are
polygonal meshes

» each frame, player moves along path not
known in advance

* assume piecewise linear: straight steps on
each frame

* assume player’'s motion could be fast

29



Stupid Algorithm

* on each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

* if they do, refuse to allow the player to move

» problems with this approach”? how can we
Improve:
* in response?
* in speed?

30



Collision Response

* frustrating to just stop

* for player motions, often best thing to do is
move player tangentially to obstacle

 do recursively to ensure all collisions caught
» find time and place of collision
* adjust velocity of player

* repeat with new velocity, start time, start
position (reduced time interval)

- handling multiple contacts at same time
» find a direction that is tangential to all contacts

31



Accelerating Collision Detection

 two kinds of approaches (many others also)
» collision proxies / bounding volumes
» spatial data structures to localize

* used for both 2D and 3D

» used to accelerate many things, not just
collision detection

* raytracing

» culling geometry before using standard
rendering pipeline

32



Collision Proxies

proxy: something that takes place of real object
» cheaper than general mesh-mesh intersections

collision proxy (bounding volume) is piece of
geometry used to represent complex object for
purposes of finding collision

* if proxy collides, object is said to collide
- collision points mapped back onto original object

good proxy: cheap to compute collisions for, tight fit
to the real geometry

common proxies: sphere, cylinder, box, ellipsoid

 consider: fat player, thin player, rocket, car ...
33



Trade-off iIn Choosing Proxies

Sphere AABB OBB 6-dop Convex Hull

increasing complexity & tightness of fit

e e ————
decreasing cost of (overlap tests + proxy update)

- AABB: axis aligned bounding box
- OBB: oriented bounding box, arbitrary alignment

* k-dops — shapes bounded by planes at fixed orientations
- discrete orientation polytope 34



Pair Reduction

want proxy for any moving object requiring collision
detection

before pair of objects tested in any detall, quickly
test if proxies intersect

when lots of moving objects, even this quick
bounding sphere test can take too long: N2 times if
there are N objects

reducing this N2 problem is called pair reduction
pair testing isn’t a big issue until N>50 or so...

35



Spatial Data Structures

 can only hit something that is close

 spatial data structures tell you what is close
to object
* uniform grid, octrees, kd-trees, BSP trees
* bounding volume hierarchies
- OBB trees

* for player-wall problem, typically use same
spatial data structure as for rendering

« BSP trees most common

36



Uniform Grids

* axis-aligned
» divide space uniformly

37



Quadtrees/Octrees

* axis-aligned
 subdivide until no points in cell

38



KD Trees

* axis-aligned
 subdivide Iin alternating dimensions

39



BSP Trees

» planes at arbitrary orientation

40



Bounding Volume Hierarchies

41



OBB Trees




Related Reading

* Real-Time Rendering
» Tomas Moller and Eric Haines
» on reserve in CICSR reading room

43



Acknowledgement

* slides borrow heavily from
» Stephen Chenney, (UWisc CS679)

* http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt

* slides borrow lightly from
- Steve Rotenberg, (UCSD CSE169)

« http://graphics.ucsd.edu/courses/cse169 w05/CSE169 17.ppt

44



