
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Picking II, Collision and Accelleration

Week 10, Fri Mar 23

2

News

• showing up for your project grading slot is not
optional
• 2% penalty for noshows

• signing up for your project grading slot is not
optional
• 2% penalty for nosignups within two days of due date

• your responsibility to sign up for slot
• not ours to hunt you down if you chose to skip class on

signup day

• we do make best effort to accomodate change
requests via email to grader for that project

3

News

• project 4 proposals due today 3pm
• handin cs314 proj3.prop

• or on paper in box

• proposal: your chance to get feedback from me
• don’t wait to hear back from me to get started

• you’ll hear from me soon if I see something dubious

• not a contract, can change as you go

4

Midterm 2: Wed Mar 26

• covering through Homework 3 material
• MT1: transformations, some viewing

• MT2 emphasis
• some viewing

• projections

• color

• rasterization

• lighting/shading

• advanced rendering (incl raytracing)

• graded H3 + solutions out Monday

5

Midterm 2: Wed Mar 26

• closed book

• allowed to have
• calculator

• one side of 8.5”x11” paper, handwritten
• write your name on it

• turn it in with exam, you’ll get it back

• have ID out and face up

6

Review: Language-Based Generation

• L-Systems
• F: forward, R: right, L: left

• Koch snowflake:
F = FLFRRFLF

• Mariano’s Bush:
 F=FF-[-F+F+F]+[+F-F-F]
• angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html

7

Review: Fractal Terrain

• 1D: midpoint displacement
• divide in half, randomly displace

• scale variance by half

• 2D: diamond-square
• generate new value at midpoint

• average corner values + random displacement
• scale variance by half each time

http://www.gameprogrammer.com/fractal.html

8

Review: Particle Systems

• changeable/fluid stuff
• fire, steam, smoke, water, grass, hair, dust,

waterfalls, fireworks, explosions, flocks

• life cycle
• generation, dynamics, death

• rendering tricks
• avoid hidden surface computations

9

Review: Picking Methods

• manual ray intersection

• bounding extents

• backbuffer coding

xVCS

y

10

Picking II

11

Select/Hit

• use small region around cursor for viewport
• assign per-object integer keys (names)
• redraw in special mode
• store hit list of objects in region
• examine hit list

• OpenGL support

12

Viewport

• small rectangle around cursor
• change coord sys so fills viewport

• why rectangle instead of point?
• people aren’t great at positioning mouse

• Fitts’ Law: time to acquire a target is
function of the distance to and size of the
target

• allow several pixels of slop

13

• nontrivial to compute
• invert viewport matrix, set up new orthogonal

projection

• simple utility command
• gluPickMatrix(x,y,w,h,viewport)

• x,y: cursor point

• w,h: sensitivity/slop (in pixels)

• push old setup first, so can pop it later

Viewport

14

Render Modes

• glRenderMode(mode)

• GL_RENDER: normal color buffer
• default

• GL_SELECT: selection mode for picking

• (GL_FEEDBACK: report objects drawn)

15

Name Stack

• again, "names" are just integers
 glInitNames()
• flat list
 glLoadName(name)
• or hierarchy supported by stack
 glPushName(name), glPopName

• can have multiple names per object

16

for(int i = 0; i < 2; i++) {
 glPushName(i);
 for(int j = 0; j < 2; j++) {
 glPushMatrix();
 glPushName(j);
 glTranslatef(i*10.0,0,j * 10.0);
 glPushName(HEAD);
 glCallList(snowManHeadDL);
 glLoadName(BODY);
 glCallList(snowManBodyDL);
 glPopName();
 glPopName();
 glPopMatrix();
 }
 glPopName();
}

Hierarchical Names Example

http://www.lighthouse3d.com/opengl/picking/

17

Hit List

• glSelectBuffer(buffersize, *buffer)
• where to store hit list data

• on hit, copy entire contents of name stack to output
buffer.

• hit record
• number of names on stack

• minimum and minimum depth of object vertices
• depth lies in the z-buffer range [0,1]

• multiplied by 2^32 -1 then rounded to nearest int

18

Integrated vs. Separate Pick Function

• integrate: use same function to draw and pick
• simpler to code

• name stack commands ignored in render mode

• separate: customize functions for each
• potentially more efficient

• can avoid drawing unpickable objects

19

Select/Hit

• advantages
• faster

• OpenGL support means hardware acceleration

• avoid shading overhead

• flexible precision
• size of region controllable

• flexible architecture
• custom code possible, e.g. guaranteed frame rate

• disadvantages
• more complex

20

Hybrid Picking

• select/hit approach: fast, coarse
• object-level granularity

• manual ray intersection: slow, precise
• exact intersection point

• hybrid: both speed and precision
• use select/hit to find object

• then intersect ray with that object

21

OpenGL Precision Picking Hints

• gluUnproject
• transform window coordinates to object coordinates

given current projection and modelview matrices

• use to create ray into scene from cursor location

• call gluUnProject twice with same (x,y) mouse
location

• z = near: (x,y,0)

• z = far: (x,y,1)

• subtract near result from far result to get direction
vector for ray

• use this ray for line/polygon intersection

22

Picking and P4

• you must implement true 3D picking!
• you will not get credit if you just use 2D

information

23

Collision/Acceleration

24

Collision Detection

• do objects collide/intersect?
• static, dynamic

• picking is simple special case of general
collision detection problem
• check if ray cast from cursor position collides

with any object in scene

• simple shooting
• projectile arrives instantly, zero travel time

• better: projectile and target move over time
• see if collides with object during trajectory

25

Collision Detection Applications

• determining if player hit wall/floor/obstacle
• terrain following (floor), maze games (walls)
• stop them walking through it

• determining if projectile has hit target
• determining if player has hit target

• punch/kick (desired), car crash (not desired)

• detecting points at which behavior should change
• car in the air returning to the ground

• cleaning up animation
• making sure a motion-captured character’s feet do not pass

through the floor

• simulating motion
• physics, or cloth, or something else

26

From Simple to Complex

• boundary check
• perimeter of world vs. viewpoint or objects

• 2D/3D absolute coordinates for bounds
• simple point in space for viewpoint/objects

• set of fixed barriers
• walls in maze game

• 2D/3D absolute coordinate system
• set of moveable objects

• one object against set of items
• missile vs. several tanks

• multiple objects against each other
• punching game: arms and legs of players
• room of bouncing balls

27

Naive General Collision Detection

• for each object i containing polygons p
• test for intersection with object j containing

polygons q
• for polyhedral objects, test if object i

penetrates surface of j
• test if vertices of i straddle polygon q of j

• if straddle, then test intersection of polygon q
with polygon p of object i

• very expensive! O(n2)

28

Fundamental Design Principles

• fast simple tests first, eliminate many potential
collisions
• test bounding volumes before testing individual

triangles

• exploit locality, eliminate many potential collisions
• use cell structures to avoid considering distant objects

• use as much information as possible about geometry
• spheres have special properties that speed collision

testing

• exploit coherence between successive tests
• things don’t typically change much between two

frames

29

Example: Player-Wall Collisions

• first person games must prevent the player
from walking through walls and other
obstacles

• most general case: player and walls are
polygonal meshes

• each frame, player moves along path not
known in advance
• assume piecewise linear: straight steps on

each frame

• assume player’s motion could be fast

30

Stupid Algorithm

• on each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

• if they do, refuse to allow the player to move

• problems with this approach? how can we
improve:
• in response?

• in speed?

31

Collision Response

• frustrating to just stop
• for player motions, often best thing to do is

move player tangentially to obstacle
• do recursively to ensure all collisions caught

• find time and place of collision
• adjust velocity of player
• repeat with new velocity, start time, start

position (reduced time interval)
• handling multiple contacts at same time

• find a direction that is tangential to all contacts

32

Accelerating Collision Detection

• two kinds of approaches (many others also)
• collision proxies / bounding volumes

• spatial data structures to localize

• used for both 2D and 3D

• used to accelerate many things, not just
collision detection
• raytracing

• culling geometry before using standard
rendering pipeline

33

Collision Proxies

• proxy: something that takes place of real object
• cheaper than general mesh-mesh intersections

• collision proxy (bounding volume) is piece of
geometry used to represent complex object for
purposes of finding collision
• if proxy collides, object is said to collide

• collision points mapped back onto original object

• good proxy: cheap to compute collisions for, tight fit
to the real geometry

• common proxies: sphere, cylinder, box, ellipsoid
• consider: fat player, thin player, rocket, car …

34

Trade-off in Choosing Proxies

 increasing complexity & tightness of fit

 decreasing cost of (overlap tests + proxy update)

AABB OBBSphere Convex Hull6-dop

• AABB: axis aligned bounding box

• OBB: oriented bounding box, arbitrary alignment
• k-dops – shapes bounded by planes at fixed orientations

• discrete orientation polytope

35

Pair Reduction

• want proxy for any moving object requiring collision
detection

• before pair of objects tested in any detail, quickly
test if proxies intersect

• when lots of moving objects, even this quick
bounding sphere test can take too long: N2 times if
there are N objects

• reducing this N2 problem is called pair reduction

• pair testing isn’t a big issue until N>50 or so…

36

Spatial Data Structures

• can only hit something that is close

• spatial data structures tell you what is close
to object
• uniform grid, octrees, kd-trees, BSP trees

• bounding volume hierarchies
• OBB trees

• for player-wall problem, typically use same
spatial data structure as for rendering
• BSP trees most common

37

Uniform Grids

• axis-aligned

• divide space uniformly

38

Quadtrees/Octrees

• axis-aligned

• subdivide until no points in cell

39

KD Trees

• axis-aligned

• subdivide in alternating dimensions

40

BSP Trees

• planes at arbitrary orientation

41

Bounding Volume Hierarchies

42

OBB Trees

43

Related Reading

• Real-Time Rendering
• Tomas Moller and Eric Haines

• on reserve in CICSR reading room

44

Acknowledgement

• slides borrow heavily from
• Stephen Chenney, (UWisc CS679)
• http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt

• slides borrow lightly from
• Steve Rotenberg, (UCSD CSE169)
• http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt

