
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Procedural Approaches II, Picking

Week 10, Wed Mar 21

2

News

• showing up for your project grading slot is
not optional
• 5 people have missed their slot, without

notifying the TA in advance of the need to
change

• 2% penalty for noshows for P3 and P4

3

Review: Environment Mapping

• cheap way to achieve reflective effect
• generate image of surrounding

• map to object as texture

• sphere mapping: texture is distorted fisheye view
• point camera at mirrored sphere

• use spherical texture coordinates

4

Review: Cube Environment Mapping

• 6 planar textures, sides of cube
• point camera outwards to 6 faces

• use largest magnitude of vector to pick face

• other two coordinates for (s,t) texel location

5

Review: Volumetric Texture

• define texture pattern
over 3D domain - 3D
space containing the
object
• texture function can be

digitized or procedural

• for each point on object
compute texture from
point location in space

• 3D function ρ(x,y,z)

6

Review: Perlin Noise: Procedural Textures

function marble(point)

x = point.x + turbulence(point);

return marble_color(sin(x))

7

Review: Perlin Noise

• coherency: smooth not abrupt changes

• turbulence: multiple feature sizes

8

Review: Generating Coherent Noise

• just three main ideas
• nice interpolation

• use vector offsets to make grid irregular

• optimization
• sneaky use of 1D arrays instead of 2D/3D one

9

Review: Procedural Modeling

• textures, geometry
• nonprocedural: explicitly stored in memory

• procedural approach
• compute something on the fly

• not load from disk

• often less memory cost

• visual richness
• adaptable precision

• noise, fractals, particle systems

10

Procedural Approaches II

11

Fractal Landscapes

• fractals: not just for “showing math”
• triangle subdivision

• vertex displacement

• recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

12

Self-Similarity

• infinite nesting of structure on all scales

13

Fractal Dimension

• D = log(N)/log(r)
N = measure, r = subdivision scale
• Hausdorff dimension: noninteger

D = log(N)/log(r) D = log(4)/log(3) = 1.26

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html

14

Language-Based Generation

• L-Systems: after Lindenmayer
• Koch snowflake: F :- FLFRRFLF

• F: forward, R: right, L: left

• Mariano’s Bush:
 F=FF-[-F+F+F]+[+F-F-F] }
• angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html

15

1D: Midpoint Displacement

• divide in half

• randomly displace

• scale variance by half

http://www.gameprogrammer.com/fractal.html

16

2D: Diamond-Square

• fractal terrain with diamond-square approach
• generate a new value at midpoint

• average corner values + random displacement

• scale variance by half each time

17

Particle Systems

• loosely defined
• modeling, or rendering, or animation

• key criteria
• collection of particles
• random element controls attributes

• position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency

• predefined stochastic limits: bounds, variance,
type of distribution

18

Particle System Examples

• objects changing fluidly over time
• fire, steam, smoke, water

• objects fluid in form
• grass, hair, dust

• physical processes
• waterfalls, fireworks, explosions

• group dynamics: behavioral
• birds/bats flock, fish school,

human crowd, dinosaur/elephant stampede

19

Particle Systems Demos

• general particle systems
• http://www.wondertouch.com

• boids: bird-like objects
• flocking/swarming behavior

• procedural motion

• http://www.red3d.com/cwr/boids/

20

Particle Life Cycle

• generation
• randomly within “fuzzy” location
• initial attribute values: random or fixed

• dynamics
• attributes of each particle may vary over time

• color darker as particle cools off after explosion

• can also depend on other attributes
• position: previous particle position + velocity + time

• death
• age and lifetime for each particle (in frames)
• or if out of bounds, too dark to see, etc

21

Particle System Rendering

• expensive to render thousands of particles
• simplify: avoid hidden surface calculations

• each particle has small graphical primitive
(blob)

• pixel color: sum of all particles mapping to it
• some effects easy

• temporal anti-aliasing (motion blur)
• normally expensive: supersampling over time
• position, velocity known for each particle
• just render as streak

22

Procedural Approaches Summary

• Perlin noise

• fractals

• L-systems

• particle systems

• not at all a complete list!
• big subject: entire classes on this alone

23

Picking

24

Reading

• Red Book
• Selection and Feedback Chapter

• all

• Now That You Know Chapter
• only Object Selection Using the Back Buffer

25

Interactive Object Selection

• move cursor over object, click
• how to decide what is below?

• ambiguity
• many 3D world objects map to same 2D point

• four common approaches
• manual ray intersection
• bounding extents
• backbuffer color coding
• selection region with hit list

26

Manual Ray Intersection

• do all computation at application level
• map selection point to a ray
• intersect ray with all objects in scene.

• advantages
• no library dependence

• disadvantages
• difficult to program
• slow: work to do depends on total number and

complexity of objects in scene

x
VCS

y

27

Bounding Extents

• keep track of axis-aligned bounding
rectangles

• advantages
• conceptually simple
• easy to keep track of boxes in world space

28

Bounding Extents

• disadvantages
• low precision
• must keep track of object-rectangle relationship

• extensions
• do more sophisticated bound bookkeeping

• first level: box check.
• second level: object check

29

Backbuffer Color Coding

• use backbuffer for picking
• create image as computational entity

• never displayed to user

• redraw all objects in backbuffer
• turn off shading calculations

• set unique color for each pickable object
• store in table

• read back pixel at cursor location
• check against table

30

• advantages
• conceptually simple

• variable precision

• disadvantages
• introduce 2x redraw delay

• backbuffer readback very slow

Backbuffer Color Coding

31

for(int i = 0; i < 2; i++)
 for(int j = 0; j < 2; j++) {
 glPushMatrix();
 switch (i*2+j) {
 case 0: glColor3ub(255,0,0);break;
 case 1: glColor3ub(0,255,0);break;
 case 2: glColor3ub(0,0,255);break;
 case 3: glColor3ub(250,0,250);break;
 }
 glTranslatef(i*3.0,0,-j * 3.0)
 glCallList(snowman_display_list);
 glPopMatrix();
}

glColor3f(1.0f, 1.0f, 1.0f);

for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++) {
 glPushMatrix();
 glTranslatef(i*3.0,0,-j * 3.0);
 glColor3f(1.0f, 1.0f, 1.0f);
 glCallList(snowman_display_list);
 glPopMatrix();

 }

Backbuffer Example

http://www.lighthouse3d.com/opengl/picking/

32

Select/Hit

• use small region around cursor for viewport
• assign per-object integer keys (names)
• redraw in special mode
• store hit list of objects in region
• examine hit list

• OpenGL support

33

Viewport

• small rectangle around cursor
• change coord sys so fills viewport

• why rectangle instead of point?
• people aren’t great at positioning mouse

• Fitts’ Law: time to acquire a target is
function of the distance to and size of the
target

• allow several pixels of slop

34

• nontrivial to compute
• invert viewport matrix, set up new orthogonal

projection

• simple utility command
• gluPickMatrix(x,y,w,h,viewport)

• x,y: cursor point

• w,h: sensitivity/slop (in pixels)

• push old setup first, so can pop it later

Viewport

35

Render Modes

• glRenderMode(mode)

• GL_RENDER: normal color buffer
• default

• GL_SELECT: selection mode for picking

• (GL_FEEDBACK: report objects drawn)

36

Name Stack

• again, "names" are just integers
 glInitNames()
• flat list
 glLoadName(name)
• or hierarchy supported by stack
 glPushName(name), glPopName

• can have multiple names per object

37

for(int i = 0; i < 2; i++) {
 glPushName(i);
 for(int j = 0; j < 2; j++) {
 glPushMatrix();
 glPushName(j);
 glTranslatef(i*10.0,0,j * 10.0);
 glPushName(HEAD);
 glCallList(snowManHeadDL);
 glLoadName(BODY);
 glCallList(snowManBodyDL);
 glPopName();
 glPopName();
 glPopMatrix();
 }
 glPopName();
}

Hierarchical Names Example

http://www.lighthouse3d.com/opengl/picking/

38

Hit List

• glSelectBuffer(buffersize, *buffer)
• where to store hit list data

• on hit, copy entire contents of name stack to output
buffer.

• hit record
• number of names on stack

• minimum and minimum depth of object vertices
• depth lies in the z-buffer range [0,1]

• multiplied by 2^32 -1 then rounded to nearest int

39

Integrated vs. Separate Pick Function

• integrate: use same function to draw and pick
• simpler to code

• name stack commands ignored in render mode

• separate: customize functions for each
• potentially more efficient

• can avoid drawing unpickable objects

40

Select/Hit

• advantages
• faster

• OpenGL support means hardware acceleration

• avoid shading overhead

• flexible precision
• size of region controllable

• flexible architecture
• custom code possible, e.g. guaranteed frame rate

• disadvantages
• more complex

41

Hybrid Picking

• select/hit approach: fast, coarse
• object-level granularity

• manual ray intersection: slow, precise
• exact intersection point

• hybrid: both speed and precision
• use select/hit to find object

• then intersect ray with that object

42

OpenGL Precision Picking Hints

• gluUnproject
• transform window coordinates to object coordinates

given current projection and modelview matrices

• use to create ray into scene from cursor location

• call gluUnProject twice with same (x,y) mouse
location

• z = near: (x,y,0)

• z = far: (x,y,1)

• subtract near result from far result to get direction
vector for ray

• use this ray for line/polygon intersection

43

Picking and P4

• you must implement true 3D picking!
• you will not get credit if you just use 2D

information

