
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Textures III, Procedural Approaches

Week 10, Mon Mar 19

2

Reading for Last Time and Today

• FCG Chap 11 Texture Mapping
• except 11.8

• RB Chap Texture Mapping
• FCG Sect 16.6 Procedural Techniques
• FCG Sect 16.7 Groups of Objects

3

€

S =1− min(R,G,B)
I

Final Clarification: HSI/HSV and RGB

• HSV/HSI conversion from RGB
• hue same in both
• value is max, intensity is average

3

BGR
I

++
=

[]

−−+−

−+−
= −

))(()(

)()(
2
1

cos
2

1

BGBRGR

BRGR
H

€

V =max(R,G,B)

€

S =1− min(R,G,B)
V

• HSI:

• HSV:

€

if (B > G),
H = 360 −H

4

News

• H3 Q2:
• full credit for using either HSV or HIS

• full credit even if do not do final 360-H step

• H3 Q4 typo
• P1 typo, intended to be r=.5, g=.7, b=.1
• also full credit for r=.5, b=.7, g=.1

5

News

• Project 3 grading slot signups
• Mon 11-12

• Tue 10-12:30, 4-6

• Wed 11-12, 2:30-4

• go to lab after class to sign up if you weren't
here on Friday

• everybody needs to sign up for grading slot!

6

News

• Project 1 Hall of Fame
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007/p1hof

• Project 4 writeup
• proposals due this Friday at 3pm
• project due Fri Apr 13 at 6pm

• Homework 4 out later
• Midterm upcoming, Wed Mar 28

7

Review: Basic OpenGL Texturing

• setup
• generate identifier: glGenTextures

• load image data: glTexImage2D

• set texture parameters (tile/clamp/...):
glTexParameteri

• set texture drawing mode (modulate/replace/...):
glTexEnvf

• drawing
• enable: glEnable

• bind specific texture: glBindTexture

• specify texture coordinates before each vertex:
glTexCoord2f

8

Review: Perspective Correct Interpolation

• screen space interpolation incorrect

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

210

221100

///

///

www

wswsws
s

γβα
γβα

++

⋅+⋅+⋅
=

9

Review: Reconstruction

• how to deal with:
• pixels that are much larger than texels?

• apply filtering, “averaging”

• pixels that are much smaller than texels ?
• interpolate

10

Review: MIPmapping

• image pyramid, precompute averaged versions

Without MIP-mappingWithout MIP-mapping

With MIP-mappingWith MIP-mapping

11

Review: Bump Mapping: Normals As Texture

• create illusion of complex
geometry model

• control shape effect by
locally perturbing surface
normal

12

Texturing III

13

Displacement Mapping

• bump mapping gets
silhouettes wrong
• shadows wrong too

• change surface
geometry instead
• only recently

available with
realtime graphics

• need to subdivide
surface

14

Environment Mapping

• cheap way to achieve reflective effect
• generate image of surrounding

• map to object as texture

15

Environment Mapping

• used to model object that reflects
surrounding textures to the eye
• movie example: cyborg in Terminator 2

• different approaches
• sphere, cube most popular

• OpenGL support
• GL_SPHERE_MAP, GL_CUBE_MAP

• others possible too

16

Sphere Mapping

• texture is distorted fish-eye view
• point camera at mirrored sphere

• spherical texture mapping creates texture coordinates that
correctly index into this texture map

17

Cube Mapping

• 6 planar textures, sides of cube
• point camera in 6 different directions, facing

out from origin

18

Cube Mapping

A

B
C

E

F

D

19

Cube Mapping

• direction of reflection vector r selects the face of the
cube to be indexed
• co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

• remaining two coordinates (normalized by the 3rd

coordinate) selects the pixel from the face.
• e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

• difficulty in interpolating across faces

20

Volumetric Texture

• define texture pattern over 3D
domain - 3D space containing
the object
• texture function can be

digitized or procedural

• for each point on object
compute texture from point
location in space

• common for natural
material/irregular textures
(stone, wood,etc…)

21

Volumetric Bump Mapping

Marble

Bump

22

Volumetric Texture Principles

• 3D function ρ(x,y,z)

• texture space – 3D space that holds the
texture (discrete or continuous)

• rendering: for each rendered point P(x,y,z)
compute ρ(x,y,z)

• volumetric texture mapping function/space
transformed with objects

23

Procedural Approaches

24

Procedural Textures

• generate “image” on the fly, instead of
loading from disk
• often saves space

• allows arbitrary level of detail

25

Procedural Texture Effects: Bombing

• randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
• for point P search table and determine if inside shape

• if so, color by shape

• otherwise, color by objects color

26

Procedural Texture Effects

• simple marble

function boring_marble(point)
x = point.x;
return marble_color(sin(x));
// marble_color maps scalars to colors

27

Perlin Noise: Procedural Textures

• several good explanations
• FCG Section 10.1
• http://www.noisemachine.com/talk1

• http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

• http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/

28

Perlin Noise: Coherency

• smooth not abrupt changes

 coherent white noise

29

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

30

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

31

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

function turbulence(p)

t = 0; scale = 1;

while (scale > pixelsize) {

t +=
abs(Noise(p/scale)*scale);

scale/=2;

} return t;

32

Generating Coherent Noise

• just three main ideas
• nice interpolation

• use vector offsets to make grid irregular

• optimization
• sneaky use of 1D arrays instead of 2D/3D one

33

Interpolating Textures

• nearest neighbor

• bilinear

• hermite

34

Vector Offsets From Grid

• weighted average of gradients
• random unit vectors

35

Optimization

• save memory and time

• conceptually:
• 2D or 3D grid

• populate with random number generator

• actually:
• precompute two 1D arrays of size n (typical size 256)

• random unit vectors

• permutation of integers 0 to n-1

• lookup
• g(i, j, k) = G[(i + P[(j + P[k]) mod n]) mod n]

36

Perlin Marble

• use turbulence, which in turn uses noise:
function marble(point)

x = point.x + turbulence(point);

return marble_color(sin(x))

37

Procedural Modeling

• textures, geometry
• nonprocedural: explicitly stored in memory

• procedural approach
• compute something on the fly
• often less memory cost
• visual richness

• fractals, particle systems, noise

38

Fractal Landscapes

• fractals: not just for “showing math”
• triangle subdivision

• vertex displacement

• recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

39

Self-Similarity

• infinite nesting of structure on all scales

40

Fractal Dimension

• D = log(N)/log(r)
N = measure, r = subdivision scale
• Hausdorff dimension: noninteger

D = log(N)/log(r) D = log(4)/log(3) = 1.26

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html

41

Language-Based Generation

• L-Systems: after Lindenmayer
• Koch snowflake: F :- FLFRRFLF

• F: forward, R: right, L: left

• Mariano’s Bush:
 F=FF-[-F+F+F]+[+F-F-F] }
• angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html

42

1D: Midpoint Displacement

• divide in half

• randomly displace

• scale variance by half

http://www.gameprogrammer.com/fractal.html

43

2D: Diamond-Square

• fractal terrain with diamond-square approach
• generate a new value at midpoint

• average corner values + random displacement

• scale variance by half each time

44

Particle Systems

• loosely defined
• modeling, or rendering, or animation

• key criteria
• collection of particles
• random element controls attributes

• position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency

• predefined stochastic limits: bounds, variance,
type of distribution

45

Particle System Examples

• objects changing fluidly over time
• fire, steam, smoke, water

• objects fluid in form
• grass, hair, dust

• physical processes
• waterfalls, fireworks, explosions

• group dynamics: behavioral
• birds/bats flock, fish school,

human crowd, dinosaur/elephant stampede

46

Particle Systems Demos

• general particle systems
• http://www.wondertouch.com

• boids: bird-like objects
• http://www.red3d.com/cwr/boids/

47

Particle Life Cycle

• generation
• randomly within “fuzzy” location

• initial attribute values: random or fixed

• dynamics
• attributes of each particle may vary over time

• color darker as particle cools off after explosion

• can also depend on other attributes
• position: previous particle position + velocity + time

• death
• age and lifetime for each particle (in frames)

• or if out of bounds, too dark to see, etc

48

Particle System Rendering

• expensive to render thousands of particles
• simplify: avoid hidden surface calculations

• each particle has small graphical primitive
(blob)

• pixel color: sum of all particles mapping to it
• some effects easy

• temporal anti-aliasing (motion blur)
• normally expensive: supersampling over time
• position, velocity known for each particle
• just render as streak

49

Procedural Approaches Summary

• Perlin noise

• fractals

• L-systems

• particle systems

• not at all a complete list!
• big subject: entire classes on this alone

