Radiosity

[electricimage.com]
© Michiel van de Panne
University of British Columbia

 Radiosity Example

reflectivity emission
A 0.8 A 0 W
B 0.8 B 0 W
L 0.85 L 100 W

form factors
from to
A 0.35 0.05
B 0.3 0 0.06
L 0.25 0.45 0
Computing an Energy Balance

More formally...

- **flux**, I: energy per unit time (W)
- **radiosity**, B: exiting flux density (W/m^2)

 flux = radiosity * area

 $I = B \times A$

- **E**: exiting flux density for light sources (W/m^2)
- **reflectivity**, R: fraction of incoming light reflected

More formally (cont.)

- emitted flux density
- exiting flux density

light leaving = light emitted + light reflected

$I_L = 100 + 0.85 \times (0.05 I_A + 0.06 I_B)$

$I_A = 0 + 0.8 \times (0.3 I_B + 0.25 I_L)$

$I_B = 0 + 0.8 \times (0.35 I_A + 0.45 I_L)$

$B_i A_i = E_i A_i + R_i \sum_j B_j F_{ji} A_j$

$E_i = E_i + R_i \sum_j B_j F_{ij} A_j$
Issues

- need to solve N simultaneous equations
 What to do when $N = 50,000$?
 - use iterative, hierarchical methods
- form factor computation is costly due to visibility
- need to reconstruct a continuous image from patches
 - interpolation schemes, non-constant basis
- curved surfaces?
- sharp shadows?
- specular reflection, translucency, refraction?
 - hybrid radiosity / ray-tracing techniques