Textures III, Procedural Approaches

Week 8, Fri Mar 4

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2005
News

- Homework 2 due 4pm today
- Homework 3 out Monday
- Project 3 out Wed Mar 15
Review: Basic OpenGL Texturing

- **setup**
 - generate identifier: `glGenTextures`
 - load image data: `glTexImage2D`
 - set texture parameters (tile/clamp/...): `glTexParameteri`
 - set texture drawing mode (modulate/replace/...): `glTexEnvf`

- **drawing**
 - enable: `glEnable`
 - bind specific texture: `glBindTexture`
 - specify texture coordinates before each vertex: `glTexCoord2f`
Review: Texture Objects and Binding

- texture objects
 - texture management: switch with bind, not reloading
 - can prioritize textures to keep in memory
 - Q: what happens to textures kicked out of memory?
 - A: resident memory (on graphics card) vs. nonresident (on CPU)
 - details hidden from developers by OpenGL
Review: Perspective Correct Interpolation

- screen space interpolation incorrect

\[s = \frac{\alpha \cdot s_0 / w_0 + \beta \cdot s_1 / w_1 + \gamma \cdot s_2 / w_2}{\alpha / w_0 + \beta / w_1 + \gamma / w_2} \]
Review: Reconstruction

- how to deal with:
 - **pixels** that are much larger than **texels**?
 - apply filtering, “averaging”
 - **pixels** that are much smaller than **texels**?
 - interpolate
Review: MIPmapping

- image pyramid, precompute averaged versions

Without MIP-mapping

With MIP-mapping
Review: Bump Mapping: Normals As Texture

- create illusion of complex geometry model
- control shape effect by locally perturbing surface normal
Review: Displacement Mapping

- bump mapping gets silhouettes wrong
 - shadows wrong too
- change surface geometry instead
 - only recently available with realtime graphics
 - need to subdivide surface
Review: Environment Mapping

- cheap way to achieve reflective effect
 - generate image of surrounding
 - map to object as texture
Review: Sphere Mapping

- texture is distorted fish-eye view
 - point camera at mirrored sphere
 - spherical texture coordinates
Review: Cube Mapping

- 6 planar textures, sides of cube
 - point camera outwards to 6 faces
 - use largest magnitude of vector to pick face
 - other two coordinates for (s,t) texel location
Volumetric Texture

- define texture pattern over 3D domain - 3D space containing the object
 - texture function can be digitized or procedural
 - for each point on object compute texture from point location in space
- common for natural material/irregular textures (stone, wood, etc...)
Volumetric Bump Mapping

Marble

Bump
Volumetric Texture Principles

- 3D function ρ
 - $\rho = \rho(x,y,z)$
- texture space – 3D space that holds the texture (discrete or continuous)
- rendering: for each rendered point $P(x,y,z)$ compute $\rho(x,y,z)$
- volumetric texture mapping function/space transformed with objects
Procedural Textures

- generate “image” on the fly, instead of loading from disk
 - often saves space
 - allows arbitrary level of detail
Procedural Texture Effects: Bombing

- randomly drop bombs of various shapes, sizes and orientation into texture space (store data in table)
 - for point P search table and determine if inside shape
 - if so, color by shape
 - otherwise, color by objects color
Procedural Texture Effects

- simple marble

```functions
function boring_marble(point)
  x = point.x;
  return marble_color(sin(x));
  // marble_color maps scalars to colors
```
Perlin Noise: Procedural Textures

- several good explanations
 - FCG Section 10.1
 - http://www.noisemachine.com/talk1
 - http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
 - http://mrl.nyu.edu/~perlin/planet/
Perlin Noise: Coherency

- smooth not abrupt changes

coherent

white noise
Perlin Noise: Turbulence

- multiple feature sizes
 - add scaled copies of noise
Perlin Noise: Turbulence

- multiple feature sizes
 - add scaled copies of noise
Perlin Noise: Turbulence

- multiple feature sizes
- add scaled copies of noise

function turbulence(p)
 t = 0; scale = 1;
 while (scale > pixelsize) {
 t += abs(Noise(p/scale)*scale);
 scale/=2;
 }
 return t;
Generating Coherent Noise

- just three main ideas
 - nice interpolation
 - use vector offsets to make grid irregular
 - optimization
 - sneaky use of 1D arrays instead of 2D/3D one
Interpolating Textures

- nearest neighbor
- bilinear
- hermite
Vector Offsets From Grid

- weighted average of gradients
- random unit vectors

\[(x_0, y_0) \quad (x_1, y_0) \quad (x_0, y_1) \quad (x_1, y_1)\]

\[g(x_0, y_0) \quad g(x_0, y_1) \quad g(x_1, y_0) \quad g(x_1, y_1)\]
Optimization

- save memory and time
- conceptually:
 - 2D or 3D grid
 - populate with random number generator
- actually:
 - precompute two 1D arrays of size n (typical size 256)
 - random unit vectors
 - permutation of integers 0 to n-1
 - lookup
 - \[g(i, j, k) = G[(i + P[(j + P[k]) \mod n]) \mod n] \]
Perlin Marble

- use turbulence, which in turn uses noise:

```javascript
function marble(point)
  x = point.x + turbulence(point);
  return marble_color(sin(x))
```
Procedural Approaches
Procedural Modeling

- textures, geometry
 - nonprocedural: explicitly stored in memory

- procedural approach
 - compute something on the fly
 - often less memory cost
 - visual richness

- fractals, particle systems, noise
Fractal Landscapes

- fractals: not just for “showing math”
 - triangle subdivision
 - vertex displacement
 - recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html
Self-Similarity

- infinite nesting of structure on all scales
Fractal Dimension

- $D = \frac{\log(N)}{\log(r)}$
- $N =$ measure, $r =$ subdivision scale
- Hausdorff dimension: noninteger

$D = \log(4)/\log(3) = 1.26$

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html
Language-Based Generation

- L-Systems: after Lindenmayer
 - Koch snowflake: F :- FLFRRFLF
 - F: forward, R: right, L: left
 - Mariano’s Bush:
 F=FF-[-F+F+F][+F-F-F]}
 - angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html
1D: Midpoint Displacement

- divide in half
- randomly displace
- scale variance by half

http://www.gameprogrammer.com/fractal.html
2D: Diamond-Square

- **diamond step**
 - generate a new value at square midpoint
 - average corner values + random amount
 - gives diamonds when have multiple squares in grid

- **square step**
 - generate new value at diamond midpoint
 - average corner values + random amount
 - gives squares again in grid
Particle Systems

- loosely defined
 - modeling, or rendering, or animation
- key criteria
 - collection of particles
 - random element controls attributes
 - position, velocity (speed and direction), color, lifetime, age, shape, size, transparency
 - predefined stochastic limits: bounds, variance, type of distribution
Particle System Examples

- objects changing fluidly over time
 - fire, steam, smoke, water
- objects fluid in form
 - grass, hair, dust
- physical processes
 - waterfalls, fireworks, explosions
- group dynamics: behavioral
 - birds/bats flock, fish school, human crowd, dinosaur/elephant stampede
Particle Systems Demos

- general particle systems
 - http://www.wondertouch.com

- boids: bird-like objects
 - http://www.red3d.com/cwr/boids/
Particle Life Cycle

- generation
 - randomly within “fuzzy” location
 - initial attribute values: random or fixed

- dynamics
 - attributes of each particle may vary over time
 - color darker as particle cools off after explosion
 - can also depend on other attributes
 - position: previous particle position + velocity + time

- death
 - age and lifetime for each particle (in frames)
 - or if out of bounds, too dark to see, etc
Particle System Rendering

- expensive to render thousands of particles
- simplify: avoid hidden surface calculations
 - each particle has small graphical primitive (blob)
 - pixel color: sum of all particles mapping to it
- some effects easy
 - temporal anti-aliasing (motion blur)
 - normally expensive: supersampling over time
 - position, velocity known for each particle
 - just render as streak
Procedural Approaches Summary

- Perlin noise
- fractals
- L-systems
- particle systems

- not at all a complete list!
 - big subject: entire classes on this alone