News

- homework correction: questions 13-16 should use:
 - unit square has points A=(0,0,0,1), B=(0,1,0,1), C=(0,1,1,1), D=(0,0,1,1) in world coordinates

Review: Illumination
- transport of energy from light sources to surfaces & points
 - includes direct and indirect illumination

Images by Henrik Wann Jensen

Review: Light Sources
- directional/parallel lights
 - point at infinity: \((x,y,z,0)^T\)
- point lights
 - finite position: \((x,y,z,1)^T\)
- spotlights
 - position, direction, angle
- ambient lights

Review: Light Source Placement
- geometry: positions and directions
- standard: world coordinate system
 - effect: lights fixed wrt world geometry
- alternative: camera coordinate system
 - effect: lights attached to camera (car headlights)

Types of Reflection
- specular (a.k.a. mirror or regular) reflection causes light to propagate without scattering.
- diffuse reflection sends light in all directions with equal energy.
- mixed reflection is a weighted combination of specular and diffuse.
Types of Reflection

- **retro-reflection** occurs when incident energy reflects in directions close to the incident direction, for a wide range of incident directions.

- **gloss** is the property of a material surface that involves mixed reflection and is responsible for the mirror-like appearance of rough surfaces.

Reflectance Distribution Model

- most surfaces exhibit complex reflectances
 - vary with incident and reflected directions.
 - model with combination

\[
\text{specular} + \text{glossy} + \text{diffuse} = \text{reflectance distribution}
\]

Surface Roughness

- at a microscopic scale, all real surfaces are rough

- cast shadows on themselves

- “mask” reflected light:

Surface Roughness

- notice another effect of roughness:
 - each “microfacet” is treated as a perfect mirror.
 - incident light reflected in different directions by different facets.
 - end result is mixed reflectance.

- smoother surfaces are more specular or glossy.

- random distribution of facet normals results in diffuse reflectance.

Physics of Diffuse Reflection

- ideal diffuse reflection
 - very rough surface at the microscopic level
 - real-world example: chalk
 - microscopic variations mean incoming ray of light equally likely to be reflected in any direction over the hemisphere
 - what does the reflected intensity depend on?

Lambert’s Cosine Law

- ideal diffuse surface reflection
 - the energy reflected by a small portion of a surface from a light source in a given direction is proportional to the cosine of the angle between that direction and the surface normal

- reflected intensity
 - independent of viewing direction
 - depends on surface orientation wrt light
 - often called Lambertian surfaces
Lambert’s Law

Intuitively: cross-sectional area of the “beam” intersecting an element of surface area is smaller for greater angles with the normal.

Computing Diffuse Reflection

- angle between surface normal and incoming light is angle of incidence:

\[I_{\text{diffuse}} = k_d \cdot I_{\text{light}} \cdot \cos \theta \]

- in practice use vector arithmetic

\[I_{\text{diffuse}} = k_d \cdot I_{\text{light}} \cdot (n \cdot l) \]

Diffuse Lighting Examples

- Lambertian sphere from several lighting angles:

need only consider angles from 0° to 90°

why?

demo: Brown exploratory on reflection

Specular Reflection

- shiny surfaces exhibit specular reflection
 - polished metal
 - glossy car finish

- specular highlight
 - bright spot from light shining on a specular surface
 - view dependent
 - highlight position is function of the viewer’s position

Physics of Specular Reflection

- at the microscopic level a specular reflecting surface is very smooth

- thus rays of light are likely to bounce off the microgeometry in a mirror-like fashion

- the smoother the surface, the closer it becomes to a perfect mirror

Optics of Reflection

- reflection follows Snell’s Law:
 - incoming ray and reflected ray lie in a plane with the surface normal
 - angle the reflected ray forms with surface normal equals angle formed by incoming ray and surface normal
Non-Ideal Specular Reflectance

- Snell’s law applies to perfect mirror-like surfaces, but aside from mirrors (and chrome) few surfaces exhibit perfect specularity
- how can we capture the “softer” reflections of surface that are glossy, not mirror-like?
- one option: model the microgeometry of the surface and explicitly bounce rays off of it
- or…

Empirical Approximation

- we expect most reflected light to travel in direction predicted by Snell’s Law
- but because of microscopic surface variations, some light may be reflected in a direction slightly off the ideal reflected ray
- as angle from ideal reflected ray increases, we expect less light to be reflected

Empirical Approximation

- angular falloff

Phong Lighting

- most common lighting model in computer graphics
 (Phong Bui-Tuong, 1975)

\[I_{\text{specular}} = k_s I_{\text{light}} (\cos \phi)^n_{\text{shiny}} \]

- \(n_{\text{shiny}}\): purely empirical constant, varies the rate of falloff
- no physical basis, works ok in practice

Phong Lighting: The \(n_{\text{shiny}}\) Term

- Phong reflectance term drops off with divergence of viewing angle from ideal reflected ray

- what does this term control, visually?

Phong Examples

- varying \(I\)
- varying \(n_{\text{shiny}}\)
Calculating Phong Lighting

- compute cosine term of Phong lighting with vectors
 \[I_{\text{specular}} = k_s I_{\text{light}} (\mathbf{v} \cdot \mathbf{r}) \]
 \[n_{\text{shiny}} \]
 - \(\mathbf{v} \): unit vector towards viewer
 - \(\mathbf{r} \): ideal reflectance direction
 - \(k_s \): specular component
 - highlight color

- how to efficiently calculate \(\mathbf{r} \)?

Calculating The \(\mathbf{R} \) Vector

\[\mathbf{P} = \mathbf{N} \cos \theta = \text{projection of } \mathbf{L} \text{ onto } \mathbf{N} \]
\[\mathbf{P} + \mathbf{S} = \mathbf{R} \]

\[\mathbf{S} = \mathbf{P} - \mathbf{L} = \mathbf{N} \cos \theta - \mathbf{L} \]

\[\mathbf{S} = \mathbf{P} - \mathbf{L} = \mathbf{N} \cos \theta - \mathbf{L} \]
\[\mathbf{N} \cos \theta + \mathbf{S} = \mathbf{R} \]
\[2 (\mathbf{N} \cos \theta - \mathbf{L}) = \mathbf{R} \]
\[\cos \theta = \mathbf{N} \cdot \mathbf{L} \]
\[2 (\mathbf{N} (\mathbf{N} \cdot \mathbf{L})) - \mathbf{L} = \mathbf{R} \]
Phong Lighting: Intensity Plots

<table>
<thead>
<tr>
<th>θ</th>
<th>$\Omega_{ambient}$</th>
<th>$\Omega_{diffuse}$</th>
<th>$\Omega_{specular}$</th>
<th>Ω_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blinn-Phong Model

- variation with better physical interpretation
 - Jim Blinn, 1977
 - h: halfway vector
 - highlight occurs when h near n

$$I_{out}(x) = k_s(h \cdot n)^{n_{shiny}} \cdot I_{in}(x) \; \text{with} \; h = (l + v)/2$$
Light Source Falloff

- quadratic falloff
 - brightness of objects depends on power per unit area that hits the object
 - the power per unit area for a point or spot light decreases quadratically with distance

\[
\text{Area } 4\pi r^2 \\
\text{Area } 4\pi(2r)^2
\]

Light Source Falloff

- non-quadratic falloff
 - many systems allow for other falloffs
 - allows for faking effect of area light sources
 - OpenGL / graphics hardware
 - \(I_c\): intensity of light source
 - \(x\): object point
 - \(r\): distance of light from \(x\)
 - \(I_{in}(x) = \frac{1}{ar^2 + br + c} \cdot I_0\)

Lighting Review

- lighting models
 - ambient
 - normals don’t matter
 - Lambert/diffuse
 - angle between surface normal and light
 - Phong/specular
 - surface normal, light, and viewpoint