University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2005

Tamara Munzner

CG in Movies

Week 13, Wed Apr 6

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2005
News

- Friday class
 - final review
 - evaluations
News

- Project 3
 - due Thursday 6pm
 - grace days are 24 hours
 - teams average grace days, so can be fractional
 - README: do a good job with documenting your achievements and your sources
 - don’t forget to handin at least two images
 - or not eligible for Hall of Fame
 - signup for demo slots continues
 - Mon 10-1, Tue 12-5, Wed 3:30-6
Extra Sessions

- extra lab coverage for project 3 questions
 - Thursday 4/7 10-1 instead of 10-11
- pre-final Q&A session
 - day before the final: Mon Apr 18, 1-3pm
 - TA Dan Julius
 - in CICSR 011 lab
- reminder: my office hours Wed 3:45 in lab
 - today 4/6
 - next week 4/13 no office hrs: grading P3
Review: Preattentive Visual Channels: Popout

- single channel processed in parallel for popout
 - visual attentional system not invoked
 - speed independent of distractor count
 - hue, shape, texture, length, width, size, orientation, curvature, intersection, intensity, flicker, direction of motion, stereoscopic depth, lighting direction,...

- multiple channels not parallel
 - search linear in number of distractor objects

[Chris Healey, Preattentive Processing, www.csc.ncsu.edu/faculty/healey/PP]
Review: Data Type Affects Channel Ranking

- spatial position best for all types
 - accuracy at judging magnitudes, from best to worst

[MacKinlay, Automating the Design of Graphical Presentations of Relational Information, ACM TOG 5:2, 1986]
Review: Coloring Categorical Data

- discrete small patches separated in space
- limited distinguishability: around 8-14
 - channel dynamic range: low
 - choose bins explicitly for maximum mileage
- maximally discriminable colors from Ware
 - maximal saturation for small areas
 - vs. minimal saturation for large areas

[Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann 1999. Figure 4.21]
Review: Rainbow Colormap Disadvantages

- perceptually nonlinear segmentation, hue unordered

- (partial) solution perceptually isolinear map

Review: Color Deficiency – vischeck.com

- 10% of males have red/green deficit

Original | Protanope | Deuteranope | Tritanope

Review: Space vs. Time: Showing Change

literal
<--->
abstract
time for time space for time

animation: show time using temporal change
 · good: show process
 · good: compare by flipping between two things
 · bad: compare between many things
 interference from intermediate frames

[Outside In excerpt. www.geom.uiuc.edu/docs/outreach/oi/evert.mpg]
[www.astroshow.com/ccdpho/pluto.gif]
[Edward Tufte. The Visual Display of Quantitative Information, p 172]
Review: Space vs. Time: Showing Change

literal
<-----------------------------
time for time

abstract
space for time

small multiples: show time using space
- overview: show each time step in array
- compare: side-by-side easier than temporal
 external cognition instead of internal memory
- general technique, not just for temporal changes

[Edward Tufte. The Visual Display of Quantitative Information, p 172]
Making Movies
Stuart Little

- 500 shots with digital character
- 6 main challenges
 - lip sync
 - matchmove (CG to live-action)
 - fur
 - clothes
 - animation tools
 - rendering, lighting, compositing
Stuart Little

- 100+ people worked on CG
 - 32 color/lighting/composite artists
 - 12 technical assistants
 - 30 animators
 - 40 artists
 - 12 R&D
Concept

- adapt book/comic/game/etc
 - Stuart Little: adopt-a-mouse
- original script
 - Toy Story: buddy movie
Storyboarding

- explicitly define
 - scenes
 - camera shots
 - special effects
 - lighting
 - scale
- used as guide by animators
Sound

- voice recording of talent completed before animation begins
- animations must match the voiceover
- quote from a puppeteer
 - voice makes or breaks a character
Character Development

- 300 drawings
Character Development

- 40 sculptures
Character Development

- computer models
Layout and Look

- build scenery
- match colors
Matchmoving

- CG camera must exactly match the real camera
 - position, rotation, focal length, aperture
- easy when camera is instrumented
 - film scanned
 - camera tracking data retrieved
- once shot is prepared, 2D images rendered and composited with live action
- still hard to place CG on moving objects on film
Matchmoving
Merging CG and Live Action

Although props that Stuart held, such as his toothbrush, were modeled, his vanity is a miniature physical model.
Shooting Film For CG

- square patterns in live action allow easier matchmove tracking
 - furniture, wall paper
- actors practice with maquettes
- maquettes replaced with laser dots
 - lasers on when camera shutter is closed
- after each take, three extra shots
 - chrome ball for environment map for Stuart’s eyes
 - white and gray balls for lighting info
Water
Particle Sim and Indentation
Tools
Compositing
Compositing

- lighting
Facial Animation
Facial Animation
Fur
Cloth
Texture
Companies

- Pixar
- Disney
- Sony Imageworks
- Industrial Light and Magic (ILM)
- Rhythm and Hues
- Pacific Data Images (PDI)
- Meteor
- Dreamworks SKG
- Tippett Studios
- Angel Studios
- Blue Sky
- Robert Abel and Associates
- Giant Studios
- BUF
Toy Story (1995)

- 77 minutes long, 110,064 frames
- Frame render times: 45 min – 20 hours
- 800,000 machine hours of rendering
- Renderfarm
 - 110 Suns operating 24-7
 - 300 CPUs
- 1 terabyte of disk space
- 3.5 minutes of animation produced each week (maximum)
Toy Story

- texture maps
 - Buzz: 189
 - scuffs and dirt: 450
- number of animation ‘knobs’
 - Buzz: 700
 - Woody: 712
 - face: 212, mouth: 58
 - Sid’s backpack: 128
- number of
 - leaves on trees: 1.2 million
 - shaders: 1300
 - storyboards: 25,000
Toy Story 2

- 80 minutes long, 122,699 frames
- 1400 processor renderfarm
- frame render time of 10 min to 3 days
- software tools
 - Alias|Wavefront
 - Amazon Paint
 - RenderMan
 - lots of custom in-house tools
Newman!

- subdivision surfaces
- polygonal hair (head)
 - texture mapped on arms
- sculpted clothes
- complex shaders
To keep a crisp leading edge on the glowing energy balls being fired at Buzz by his archenemy, the evil Emperor Zurg, the effects team blurred the objects one-half frame backward in time.
Toy Story 2 Images

If you look closely, you can see yellowed printed material, little scratches, and paint worn off metal surfaces that tell you this collection is old but well-maintained.
Lighting conditions in Toy Story 2 range from bright daylight to nighttime scenes such as this one in which Buzz and the toys race to Woody's rescue in a Pizza Planet truck.
Final Fantasy

Final Fantasy

- main characters > 300,000 polys
- 1336 shots, 149,246 frames
- frame render time avg: 90 min
- 24,606 layers
 - avg 18 per shot, max 500
- 934,162 days of render time if one CPU
 - they used 1200 CPUs: 778 days of rendering
- and that’s just final rendering!
 - lots of tests and tweaks before that
Final Fantasy

- Renderman (Pixar) used for rendering
 - direct illumination
 - many hacks to fake global illumination
- Maya used for modeling
- hair
 - modeled as splines
 - lighting and rendering complicated as well
Production Team

- director
- modeler
- lighting
- character animator
- technical director
- render wrangler
- tools developer
- shader writer
- effects animator
- looks team
Acknowledgements

- David Brogan, University of Virginia
 - CS 445/645, Fall 2002