CPSC 313 — COMPUTER HARDWARE AND OPERATING SYSTEMS

2018 Winter Term 1
WHO AM I?

- Jonatan Schroeder
 - Lecturer, Department of Computer Science, since 2016
 - Before that, Teaching Assistant, Research Assistant, Sessional Lecturer
 - Office: ICCS 241
About Registration

- **Current situation: as of August 30**
 - 155 registered in the course
 - 26 in waitlist
 - 34 students not registered in a tutorial (including waitlist students)

- **Waitlist: please come to class for now**

- **Tutorials**
 - No official requirement to be in a tutorial
 - If you are not registered, please come to one that fits your schedule for now
INTRODUCE YOURSELF

- Find 3 people around you, preferably people you have never met
 - Form a group

- Introduce yourself to each person in the group

- Topics of discussion
 - What area of Computer Science you are interested in?
 - Why are you taking this course? What do you want to learn?
Hiding complexity is usually good
 - All computation is mechanical
 - At the machine-level all computation is extremely complex

We work at a higher-level whenever we can
 - Design, describe, evaluate and debug
Abstractions sometimes hide too much
- performance, correctness, security are not fully covered in one layer

Good programmers must be able to dig deeper
- understanding computation at various levels of abstraction
 - including the lower layers of abstraction describing how hardware works

Extra reading on this topic on Canvas
LEARNING TO THINK ACROSS THE LAYERS

- Good mental models of multiple layers
 - CPU implementation
 - What is concurrent and what is sequential
 - Caches and the memory system
 - Disks
 - Virtual memory
 - File systems
 - Operating systems
int foo(int j, int k) {
 int i, l;
 l = j;
 for (i = 0; i < k; i++)
 l = bar(l, i);
 printf("foo(%d, %d) = %d\n", j, k, l);
 return l;
}
COURSE LEARNING GOALS

- After you complete this course, you will be able to:
 - Utilize your knowledge of the CPU and memory systems to optimize C/C++ code to make it run faster
 - Describe a possible high-level architecture for a pipelined CPU.
 - Explain the importance of, and the issues with, instruction-level parallelism and its implementation.
 - Describe the various types of memory used by modern computers, and explain how the hardware and the operating system cooperate to manage this memory.
 - Explain the issues that must be considered while designing file systems, and how file systems are managed.
 - Explain and trace how a paged virtual memory system works.
WHICH MEANS

- if you take this course seriously, you will ...
 - be better at writing, reading and debugging programs
 - be better at designing solutions to complex problems
 - be better able to understand how computers compute
 - see the importance of and issues with instruction-level parallelism
 - see the importance of and issues with system-level software
 - be a better C/C++ programmer
 - be better able to analyze and solve system-level programming problems
To Achieve This

- We will explore
 - Computer architecture
 - Storage hierarchies
 - Storage management
 - Operating systems
 - Virtual memory

- With respect to issues like:
 - persistence, synchronization and failure
 - concurrency
TENTATIVE LIST OF UNITS

- Designing a sequential CPU for the Y86-64 ISA
- Designing a pipelined CPU for the Y86-64 ISA
- Caching and the memory hierarchy
- Disks and file systems
- Operating systems (processes) and virtual memory
BASIC COURSE INFORMATION

- Pre-requisites
 - CPSC 213, CPSC 221
 - Alternative route: CPSC 210, 260 and EECE 320 instead of CPSC 221
 - I cannot waive these pre-requisites, if you don’t have them, talk to a department advisor

- Other resources
 - Canvas: pre-readings, study material, administrative information, tutorial handouts, assignment descriptions
 - Stash: assignment code check out and hand in
 - Piazza: Q&A discussion, course announcements
 - Gradescope: graded quizzes and regrade requests
CONTACT

- My office: ICCS 241
 - Generally, if my door is open feel free to ask me
- Contact me: https://www.ugrad.cs.ubc.ca/~cs313/contact
 - Avoid using my personal email for course related matters
- Office hours: listed on Canvas
- For general questions about course material or assignments, do not email directly. Instead:
 - Use Piazza
 - Ask a TA during tutorials or office hours
 - Ask me before or after class or during office hours
TEACHING ASSISTANTS

- Our teaching assistants are:
 - Siyuan He
 - Tanner Johnson
 - Mohammad Mehr Ali
 - Russell Blickhan

- Office hours: link listed on Canvas
TEXTBOOK

 - If you’ve taken CPSC 213 you should have it
 - 2nd edition should work for most of the material (references may be different)

- Other useful references listed on Canvas
CANVAS

- https://canvas.ubc.ca/
- We will use Canvas for:
 - Learning Goals and Readings
 - Assigned problems
 - Additional references
 - Assignments
 - Course policies and administrative information
- We will not use Canvas for:
 - Discussion and announcements (use Piazza instead)
 - Communication (use contact link instead)
SLIDES

- Slides will be regularly posted on Canvas
 - In Powerpoint format (with fonts embedded to minimize compatibility problems)
 - PDF if possible, but may not be updated as often if slides change
 - As a UBC student you get access to a free version of Office 365 (check link on Canvas)

- As much as possible will be posted in advance
 - Sometimes they may be modified shortly before class
Discussion board
- Do not use the discussion board on Canvas

To join:
- Go to Canvas
- In the Resources module, check the instructions
- The access code is listed in the instructions

You may use a fake name if you want – but you have to tell me what it is by sending me the details
TUTORIALS

- Tutorials start next week
- Tutorials will
 - Provide help/guidance for the assignments
 - Work on problems relevant to the course material
GRADING SCHEME

- Grading Scheme:
 - Assignments (4): 30%
 - Quizzes (5): 30%
 - Final exam: 40%

- In order to pass you must:
 - Get 50% in the final exam
 - Get 50% in the overall average of the assignments

- I reserve the right to make minor modifications to the rules above
PRACTICE THROUGH ASSIGNMENTS

- Code delivery and handing in will use Git
 - Stash: department-provided Git server, based on commercial version of BitBucket
- Your assignment must compile and work in the department computers
 - Assignments will be tested in the department’s Linux environment
- Late assignments: penalized at 33.33% per day prorated by minute
 - Assignments not accepted after 48 hours
 - Hand in time determined by last commit pushed to the Stash server
ASSIGNMENT SCHEDULE

- Assignment 1: Assembly (disassembler)
 - Due: September 28
- Assignment 2: Pipelining
 - Due: October 19
- Assignment 3: Caching
 - Due: November 9
- Assignment 4: File Systems
 - Due: November 30
EXAMINATIONS

- Biweekly quizzes:
 - Every other Wednesday starting September 19, in class
 - Each quiz is 45 minutes long

- Final exam is 2 ½ hours long
 - *Do not* make any travel arrangements for December until after the final exam date has been set
SOME RULES: USE OF LAPTOPS

- Laptops can be useful
 - Note taking, following slides, checking material, in-class activities

- However there are problems
 - Research suggests taking notes on paper provides better knowledge retention
 - http://www.brainrules.net/
 - Facebook, messaging, Web surfing, playing games, watching videos distract you and your classmates around you
SOME RULES: USE OF LAPTOPS (CONT.)

- Rule: laptops are to be used only for CPSC 313 course related work
 - Do not use it for other purposes (Facebook, Web, etc.)
 - Do not use it for course work for other courses
 - If possible, sit towards the back of the room
 - Operate on dimmest settings
 - Close laptop when not in use

- Public shaming is permitted (or comment privately to me)
Some Rules: Absences

- If you must be absent in an exam, contact me as soon as you are aware of the problem.
- You do not need to notify me of absences in days when there is no graded work.
- For assignments, there is no special consideration for expected absences.
- You may need to provide documentation:
 - Medical doctor’s note, accident report, court appearance noticed, etc.
- Failure to do so could result in a grade of zero.
- Full policy and notification instructions available on Canvas.
SOME RULES: MARKING DISAGREEMENTS

- You have 1 week from when a piece of graded work is handed back to inform me of any errors in addition, missing components or similar problems.

- If you believe something was incorrectly marked you have 1 week from when the work was handed back to bring this to my attention:
 - Provide a detailed response explaining why the answer, as written, is correct.
 - “But I meant …” is not a valid response.
 - After 1 week the mark stands.

- When submitting something for marking reconsideration, I reserve the right to review the marking of other questions for accuracy and consistency.

- Full policy and notification instructions available on Canvas.
ACADEMIC CONDUCT

- TL;DR: Don’t cheat!!
- What’s allowed:
 - Helping each other understand material and assignments
 - Exploring/discussing solutions to assignments
 - Discussing assignments with no looking at each others code or exchanging anything written (i.e. talk but don’t write)
 - Using existing public approaches to a problem – but you must properly cite the work
 - Discussing with current 313 students existing approaches to solving a problem
 - Discussing requirements
 - Discussing the merits of a proposed solution with the course instructor or TAs
ACADEMIC CONDUCT (CONT.)

- What’s not allowed
 - Submitting someone else’s work as your own
 - Accessing someone else’s answer through illicit means or by exploiting vulnerabilities
 - Having in your possession previous solutions to assignments (instructor’s or other student’s)
 - Working in a group but submitting the work individually
 - Submitting code you have handed in to another course (unless permitted)
 - Making a solution available as an aid to others, intentionally or by accident
 - Sharing code between devices or partners using public tools (e.g., public Github repo)
ACADEMIC CONDUCT (CONT.)

- If you are uncertain: ASK!!!

- Possible penalties
 - Failing grade in the work in question or in the course in general
 - Suspension from the University
 - Reprimand with letter in student’s file
 - Notation in student’s permanent record

- More information on Canvas
THINGS TO DO

▪ Register on Canvas
 ▪ Read all Policies and become aware of the resources

▪ Register on Piazza

▪ Install an SSH client on your laptop
 ▪ Windows: https://my.cs.ubc.ca/docs/free-terminal-emulation-software-xmanager
 ▪ Linux/Mac: make sure SSH package is installed

▪ Install Git on your laptop
 ▪ If using Eclipse or IntelliJ, there are plugins for Git