
Q1 Q2 Q3 Q4 Q5 TOTAL

50 50 50 45 30 225 bonus

Definition of Programming Languages

CPSC 311 2016W1
University of British Columbia

Practice Final Examination—Episode One plus Q5

Joshua Dunfield

Student
Name:

Student
Number:

Signature:

INSTRUCTIONS
• This is a CLOSED BOOK / CLOSED NOTES examination.

• Write all answers ON THE EXAMINATION PAPER.

Try to write your answers in the blanks or boxes given. If you can’t, try to write them elsewhere
on the same page, or on one of the worksheet pages, and LABEL THE ANSWER. We can’t
give credit for answers we can’t find.

• Blanks are suggestions. You may not need to fill in every blank.

This is an incomplete practice exam; the actual final exam will have an additional question
on subtyping. We plan to release an updated version of this practice exam that includes a
question on subtyping.

Question 1 [50 points]: “If it’s ‘dynamic’, it must be better.”

The following rules define an environment-based semantics for lexically-scoped functions, Lam,
and dynamically-scoped functions, Ds-lam.

env ` e ⇓ v Under environment env, expression e evaluates to value v

env ` (Num n) ⇓ (Num n)
Env-num

env ` e1 ⇓ (Num n1) env ` e2 ⇓ (Num n2)

env ` (Add e1 e2) ⇓ (Num n1+n2)
Env-add

env ` e1 ⇓ v1 x=v1, env ` e2 ⇓ v2
env ` (Let x e1 e2) ⇓ v2 Env-let

lookup(env, x) = e

env ` (Id x) ⇓ e Env-id
lookup(env, x) undefined

env ` (Id x) unknown-id-error
Env-unknown-id

env ` (Lam x e1) ⇓ (
Clo env (Lam x e1)

) Env-lam
envold ` e ⇓ v

env ` (Clo envold e) ⇓ v Env-clo

env ` e1 ⇓ (Clo envold (Lam x eB)) env ` e2 ⇓ v2 x=v2, envold ` eB ⇓ v
env ` (App e1 e2) ⇓ v Env-app

env ` (Ds-lam x e1) ⇓ (Ds-lam x e1)
Env-ds-lam

env ` e1 ⇓ (Ds-lam x eB) env ` e2 ⇓ v2 x=v2, env ` eB ⇓ v
env ` (App e1 e2) ⇓ v Env-ds-app

Assume that lookup(env, x) returns the leftmost binding of x. For example:

lookup
((
x=(Num 2), x=(Num 1), ∅

)
, x

)
= (Num 2)

Consider the following expression, shown in concrete syntax (left) and in abstract syntax (right).

{Let y 100

{Let f {Let y 10

{Lam x {+ x y}}}

{Let y 2

{App f y}}}}

(
Let y (Num 100)(

Let f
(
Let y (Num 10)

(Lam x (Add (Id x) (Id y)))
)(

Let y (Num 2)

(App (Id f) (Id y))
)))

Q1a [10 points] Complete the
abstract syntax tree for
the above expression.

=⇒ Let

/ | \

y Num

100

2

Question 1 [50 points]: “If it’s ‘dynamic’, it must be better.” (cont.)

Q1b [10 points] If we evaluate the above expression in the empty environment, what value do we get?

(Num 12)

Q1c [10 points] While evaluating the above expression, we will evaluate the body of the Lam. When we
evaluate that expression, (Add (Id x) (Id y)), what is the complete environment?

x=(Num 2), y=(Num 10), y=(Num 100), ∅

Q1d [10 points] Warning: Dynamic scope ahead!

If we evaluate the expression that is almost the same, but has Ds-lam in place of Lam, as
shown below, what value do we get? (Num 4)

{Let y 100

{Let f {Let y 10

{Ds-lam x {+ x y}}}

{Let y 2

{App f y}}}}

(
Let y (Num 100)(

Let f
(
Let y (Num 10)

(Ds-lam x (Add (Id x) (Id y)))
)(

Let y (Num 2)

(App (Id f) (Id y))
)))

Q1e [10 points] (No more dynamic scope. Yay!)

This will be a question about substitution.
It should be roughly similar to Q1 on the midterm, but will probably ask you to show your
work by writing the intermediate steps of applying the substitution.

3

Worksheet (i)

4

Worksheet (ii)

5

Question 2 [50 points]: Little Perennials II

The expression strategy, value strategy, and lazy evaluation are different ways of evaluating a func-
tion application (App e1 e2). All strategies evaluate e1 to (Lam x eB), but they differ in how they
handle e2:

• The expression strategy evaluates eB with x bound to a “thunk” containing e2. The thunk is
a closure (Clo env e2), which saves the current environment env, to make sure we don’t use
dynamic scoping.

• The value strategy evaluates e2 to a value v2, then evaluates eB with x bound to that value.

• Lazy evaluation creates a lazy thunk, `.(Lazy-thk env e2), in the store, and evaluates eB with
x bound to (Lazy-ptr `). If (Id x) is evaluated, we evaluate e2 to a value v2, and replace
`.(Lazy-thk env e2) with `.v2 (rule SEnv-lazy-ptr). If (Id x) is evaluated again, rule SEnv-
lazy-ptr-done looks up the value v2, without evaluating e2 again.

If you need to, you can refer to the following evaluation rules:

env;S ` e ⇓ v;S ′ Under environment env and store S, expression e evaluates to v with updated store S ′

env;S ` (Lam x e1) ⇓ (
Clo env (Lam x e1)

)
;S

SEnv-lam
envold;S1 ` e ⇓ v;S2

env;S1 ` (Clo envold e) ⇓ v;S2 SEnv-clo

env;S ` e1 ⇓ (Clo envold (Lam x eB));S1 env;S1 ` e2 ⇓ v2;S2 x=v2, envold;S2 ` eB ⇓ v;S ′
env;S ` (App e1 e2) ⇓ v;S ′ SEnv-app-value

env;S ` e1 ⇓ (Clo envold (Lam x eB));S1 x=(Clo env e2), envold;S1 ` eB ⇓ v;S2
env;S ` (App e1 e2) ⇓ v;S2 SEnv-app-expr

env;S ` e1 ⇓ (Clo envold (Lam x eB));S1 x=(Lazy-ptr `), envold; `.(Lazy-thk env e2), S1 ` eB ⇓ v;S2
env;S ` (App e1 e2) ⇓ v;S2 SEnv-app-lazy

lookup-loc(S, `) = (Lazy-thk envarg e2) envarg;S ` e2 ⇓ v;S1 update-loc(S1, `, v) = S2

env;S ` (Lazy-ptr `) ⇓ v;S2 SEnv-lazy-ptr

lookup-loc(S, `) = v2 v2 6= (Lazy-thk · · · · · ·)
env;S ` (Lazy-ptr `) ⇓ v2;S SEnv-lazy-ptr-done

lookup(env, x) = e env;S ` e ⇓ v;S ′
env;S ` (Id x) ⇓ v;S ′ SEnv-id

env;S ` e1 ⇓ (Num n1);S1 env;S1 ` e2 ⇓ (Num n2);S ′

env;S ` (Add e1 e2) ⇓ (Num n1+ n2);S ′
SEnv-add

env;S ` e1 ⇓ (Num n1);S1 env;S1 ` e2 ⇓ (Num n2);S ′

env;S ` (Sub e1 e2) ⇓ (Num n1− n2);S ′
SEnv-sub

6

Question 2 [50 points]: Little Perennials II, continued

Consider the following expression:

{App {App {Lam x {Lam y {+ y y}}}

{- 7 1}}

{- 10 1}}

(
App

(
App

(
Lam x (Lam y (Add (Id y) (Id y)))

)
(
Sub (Num 7) (Num 1)

))
(
Sub (Num 10) (Num 1)

))
Q2a [15 points] If we implement the SEnv-app-value rule (and not the SEnv-app-expr and SEnv-app-lazy

rules) and evaluate the above expression, we will perform

1 addition(s), and 2 subtraction(s).

Q2b [10 points] Now we switch from the value strategy to the expression strategy.
Complete the derivation tree for the second premise of SEnv-app-expr.

∅; ∅ `
(
Lam x eBody

)
⇓ (Clo ∅ (Lam x eBody)); ∅

SEnv-lam

x=(Clo ∅ eSub), ∅; ∅ ` eBody ⇓ (Clo x=(Clo ∅ eSub) eBody); ∅
SEnv-lam

∅; ∅ `
(

App
(
Lam x (Lam y (Add (Id y) (Id y)))︸ ︷︷ ︸

eBody

) (
Sub (Num 7) (Num 1)

)︸ ︷︷ ︸
eSub

) ⇓ (Clo x=(Clo ∅ eSub) eBody); ∅
SEnv-app-expr

Q2c [10 points] If we implement the SEnv-app-expr rule instead of SEnv-app-value, and evaluate the expres-
sion at the top of the page, we will perform

1 addition(s), and 2 subtraction(s).

Q2d [15 points] If we implement the SEnv-app-lazy rule instead of SEnv-app-value, and evaluate the expres-
sion at the top of the page, we will perform

1 addition(s), and 1 subtraction(s).

7

Question 3 [50 points]: Big Log

The small-step semantic interpreters we have seen so far don’t include side effects. Useful side
effects include state (Ref, Deref, Setref) and input/output.

An interpreter can be extended with input/output by introducing a Print construct, and we can
model the effect of printing by appending to an output buffer B:

B; e −→ B ′; e ′ With starting buffer B, expression e steps to expression e ′ and an updated buffer B ′

Reduction rules:

B;
(
Add (Num n1) (Num n2)

)
−→ B; (Num n1+n2)

Step-add

B; (Let x v1 e2) −→ B;
[
v1
/
x
]
e2

Step-let

B2 = append(B1, v)

B1; (Print v) −→ B2; v
Step-print

Context rule:

B; e −→ B ′; e ′

B; C[e] −→ B ′; C[e ′]
Step-context

Rule Step-context uses the following
evaluation contexts:

C ::= []
| (Add C e)
| (Add v C)
| (Let x C e)
| (Print C)

This question uses the following define-types, and functions with the following signatures:

(define-type Config ; Type of result of 'reduce' and 'step':
[config (B Buffer?) (e E?)]) ; a buffer and an expression

(define-type Buffer

[buffer/empty]

[buffer/append (head Buffer?) (tail E?)])

; append-buffer : Buffer E → Buffer
;
; (append-buffer B1 v) = append(B1, v)

; value? : E → boolean
;
; Returns #true iff e is a Num.

Go to the next page.

8

Question 3 [50 points]: Big Log, continued
Q3a [15 points] In the function reduce (below), implement the rule Step-print.

; reduce : Buffer E −> (or Config false)
; Given a buffer B and expression e, return (config B2 e2) where B; e −→ B2; e2
; using a reduction rule, or #false if no reduction rule can be applied.
(define (reduce B e)

(type-case E e

[Add (e1 e2)

(if (and (value? e1) (Num? e1)

(value? e2) (Num? e2))

(config B

(Num (+ (Num-n e1) (Num-n e2))))

#false)]

; ...
[Print (e1)

(if (value? e1)

(config (append-buffer B e1)

e1)

#false)

]))

Q3b [15 points] In the function step (below), implement the evaluation context (Print C).

; step : Buffer E −> (or Config false)
; Given a buffer B and expression e, return (config B2 e2) where B; e −→ B2; e2
; using rule Step-context, or #false if no derivation of B; e −→ B2; e2 exists.
(define (step B e)

(or (reduce B e)

(type-case E e

[Add (e1 e2)

(if (step B e1)

(type-case Config (step B e1) ; C ::= (Add C e2)
[config (B2 s1)

(config B2 (Add s1 e2))])

(if (and (value? e1) (step B e2))

(type-case Config (step B e2) ; C ::= (Add v C)
[config (B2 s2)

(if s2

(config B2 (Add e1 s2))

#false)])

#false)

)])]

; ...
[Print (e1)

(and (step B e1)

(type-case Config (step B e1)

[config (B2 s1)

(config B2 (Print s1))])))

9

Question 3 [50 points]: Big Log, continued

Q3c [20 points] We can model concurrency in our language by adding angelic nondeterminism:

B; (Par v1 e2) −→ B; v1
Step-par-left

B; (Par e1 v2) −→ B; v2
Step-par-right

C ::= · · ·
| (Par C e)
| (Par e C)

Let −→∗ be the reflexive-transitive closure of −→.

That is, e −→∗ e ′ if either e ′ = e, or e −→ e2 and e2 −→∗ e ′.
Suppose our program is this expression e:

e =

(
Print

(
Par

(
Let r2 (Print (Num 2)) (Num 22)

) (
Let r3 (Print (Num 3)) (Num 33)

)))
The result of repeatedly stepping e is not always the same; both the buffer and the resulting value
can vary.

For example:
〈 〉; e −→∗ 〈(Num 2), (Num 22)〉; (Num 22)

by the intermediate steps

〈 〉; e −→ 〈(Num 2)〉;
(

Print
(

Par
(
Let r2 (Num 2) (Num 22)

) (
Let r3 (Print (Num 3)) (Num 33)

)))
−→ 〈(Num 2)〉;

(
Print

(
Par (Num 22)

(
Let r3 (Print (Num 3)) (Num 33)

)))
−→ 〈(Num 2)〉;

(
Print (Num 22)

)
−→ 〈(Num 2), (Num 22)〉; (Num 22)

Fill in the intermediate computation steps:

〈 〉; e −→ 〈(Num 3)〉;
(

Print
(

Par
(
Let r2 (Print (Num 2)) (Num 22)

) (
Let r3 (Num 3) (Num 33)

)))

−→ 〈(Num 3)〉;
(

Print
(

Par
(
Let r2 (Print (Num 2)) (Num 22)

)
(Num 33)

))

−→ 〈(Num 3)〉;
(

Print (Num 33)

)
−→ 〈(Num 3), (Num 33)〉; (Num 33)

Note: Different solutions are possible!

10

Worksheet (iii)

11

Question 4 [45 points]: Power of Two
This question is about intersection types, which are a little like polymorphic types: they describe expressions
that have more than one type. (But you can answer this question without remembering anything about
polymorphic types!)

In bidirectional typing, the judgment form Γ ` e : A is replaced by two judgments:

Γ ` e⇒ A read “under assumptions in Γ , the expression e synthesizes type A”

Γ ` e⇐ A read “under assumptions in Γ , the expression e checks against type A”

An expression e has type A1 ∩ A2, “A1 intersect A2”, if e has type A1 and e has type A2.

A reasonable introduction rule for ∩—a rule that has ∩ in its conclusion—is a checking rule:

Γ ` e⇐ A1 Γ ` e⇐ A2

Γ ` e⇐ (A1 ∩ A2)
Check-sect-intro

If we know that an expression has type (A1 ∩ A2), then it has type A1 and also type A2. For example,
supposing

Γ ` (Id multiply) ⇒ (
(pos ∗ pos) → pos

)
∩
(
(int ∗ int) → int

)
then if we apply multiply to a pair of integers(

App (Id multiply) (Pair (Num 5) (Num −3))
)

we should know from (Id multiply) ⇒ (
(pos ∗ pos) → pos

)
∩
(
(int ∗ int) → int

)
that (Id multiply) ⇒ (

(int ∗ int) → int
)
, and (using Synth-app) derive

Γ `
(
App (Id multiply) (Pair (Num 5) (Num −3))

) ⇒ int

The step of deriving multiply ⇒ A2 from multiply ⇒ (A1 ∩ A2) is accomplished by an elimination rule,
Synth-sect-elim2.

Γ ` e⇒ (A1 ∩ A2)
Γ ` e⇒ A1

Synth-sect-elim1
Γ ` e⇒ (A1 ∩ A2)

Γ ` e⇒ A2
Synth-sect-elim2

Some additional rules:

Γ(x) = A

Γ ` (Id x) ⇒ A
Synth-var

Γ ` e1⇒ (A→ A ′) Γ ` e2⇐ A

Γ ` (App e1 e2) ⇒ A ′ Synth-app

n ∈ Z n ≥ 0
Γ ` (Num n) ⇒ pos

Synth-pos
n ∈ Z

Γ ` (Num n) ⇒ int
Synth-int

Γ ` e⇒ A A = B

Γ ` e⇐ B
Check-sub

Q4a [20 points] Complete the following derivation.

Γ(copy) = (Apos ∩ Aint))
Γ ` copy : (Apos ∩ Aint)

Synth-var

Γ ` (Id copy) ⇒ Aint
Synth-sect-elim2

Γ ` (Num −3) ⇒ int
Synth-int

int = int

Γ ` (Num −3) ⇐ int
Check-sub

copy :
(
pos → (pos∗pos)

)︸ ︷︷ ︸
Apos

∩
(
int → (int∗int)

)︸ ︷︷ ︸
Aint︸ ︷︷ ︸

Γ

`
(
App (Id copy) (Num −3)

) ⇒ (int ∗ int)
Synth-app

12

Question 4 [45 points]: Power of Two, continued
(define-type Type

[Tpos] ; positive integers
[Tint] ; integers
[Trat] ; rationals
[Tbool]

[T* (A1 Type?) (A2 Type?)]

[T-> (domain Type?) (range Type?)]

[Tsect (A1 Type?) (A2 Type?)]) ; A1 ∩ A2

Q4b [15 points] Again, the rule for checking an expression e against a given intersection type (A1 ∩ A2):

Γ ` e⇐ A1 Γ ` e⇐ A2

Γ ` e⇐ (A1 ∩ A2)
Check-sect-intro

Implement Check-sect-intro in check, or use the space to (briefly) explain why this is not feasible (as-
suming you cannot change the signatures of check/synth or any existing branches of those functions).
For reference, we have shown the code that implements the rule Check-pair.

Γ ` e1⇐ B1 Γ ` e2⇐ B2

Γ ` (Pair e1 e2) ⇐ (B1 ∗ B2)
Check-pair

; synth : Typing-context E −> (or false Type)
; check : Typing-context E Type −> boolean
;
(define (check tc e B)

(type-case Type B

[Tsect (A1 A2)

(and (check tc e A1)

(check tc e A2))

]

[else ; B not Tsect
(type-case E e

; ...
[Pair (e1 e2) (type-case Type B

[T* (B1 B2) (and (check tc e1 B1)

(check tc e2 B2))]

[else #false])]

; ...
[else #false ; you can cross this out, if necessary

(Nothing to add here.)

] ; end of else branch of type-case E e
] ; end of else branch of type-case Type B

))

13

Question 4 [45 points]: Power of Two, continued

Q4c [10 points]

Suppose that, instead of bidirectional typing, we are using the traditional single typing judgment Γ ` e : A.
Rules for the intersection type ∩ can be obtained by copying the bidirectional rules Check-sect-intro, Synth-
sect-elim1 and Synth-sect-elim2, and replacing “⇒” and “⇐” with “:”.

Γ ` e : A1 Γ ` e : A2
Γ ` e : (A1 ∩ A2)

Type-sect-intro

Γ ` e : (A1 ∩ A2)
Γ ` e : A1

Type-sect-elim1
Γ ` e : (A1 ∩ A2)

Γ ` e : A2
Type-sect-elim2

Implement Type-sect-intro in typeof, or use the space to (briefly) explain why this is not feasible (assuming
you cannot change the signature of typeof or any existing branch).

(define (typeof tc e) ; typeof : Typing-context E −> (or false Type)

Not feasible, because we don’t know when to apply Type-sect-intro.

We would need a way to know when we might get two different types, or somehow enumerate all the
possible results of typeof.

(type-case E e

; ...
[Pair-case (e x1 x2 eBody)

(let ([Ae (typeof tc e)])

(and Ae

(type-case Type Ae

[T* (A1 A2)

(let ([tc2 (tc/cons-tp x1 A1 (tc/cons-tp x2 A2 tc))])

(typeof tc2 eBody))]

[else #false])))]

; ...
[else #false ; you can cross this out, if necessary

(see explanation above)

]))

14

Question 5 [30 points]: The Criminal Cats of West 11th Avenue
The subsumption principle states that, if A1 <: A2 (meaning that A1 is a subtype of A2), then any value of
type A1 can safely be used wherever a value of type A2 is required.

Each part of this question proposes one or more subtyping rules. In each part, determine whether the rules
proposed maintain the subsumption principle or violate it. If they violate the subsumption principle, give an
example of an expression of type A1 that cannot be safely used where an expression of type A2 is expected.

Assume, in all the parts, that we have the following subtyping and typing rules that allow us to distinguish
positive (≥ 0) rational numbers from negative (≤ 0) rational numbers through types pos and neg, which are
both subtypes of rat. Also assume there is a function print-pos : pos → pos that can only print positive
rationals, and will crash if given a rational that is less than zero.

pos <: rat neg <: rat

n ≥ 0
Γ ` (Num n) : pos

n ≤ 0
Γ ` (Num n) : neg

Example Proposed rule:
rat <: pos

Does this proposed rule: maintain the subsumption principle, or

X violate it (example expression: (Num −3))

Note: As this sample answer shows, we are not asking for an entire expression that will give an error when
evaluated—only for an expression that (in this example) has type rat and that cannot be safely used where
an expression of type pos is expected. That is, you do not have to show us an expression such as(

App (Id print-pos) (Num −3)
)

However, thinking about such expressions may help you answer the questions.

Q5a
[15 points] Recall some relevant typing rules:

Γ ` e : A
Γ ` (Ref e) : ref A

Γ ` e : ref A

Γ ` (Deref e) : A

Γ ` e1 : ref A Γ ` e2 : A
Γ ` (Setref e1 e2) : A

Proposed rule: A <: B B <: A

(ref A) <: (ref B)
Does this proposed rule:

X maintain the subsumption principle, or

violate it (example expression:)

where A = and B =

Q5b
[15 points]

The feline criminals of West 11th Avenue (perhaps confused about the meaning of “rat”) have proposed
that any function taking a rat as its argument can be used as a rat.
Recall some relevant typing rules:

Γ ` e1 : rat Γ ` e2 : rat

Γ ` (Add e1 e2) : rat

x : A, Γ ` eBody : B

Γ ` (Lam x eBody) : (A→ B)

Γ ` e1 : (A→ B) Γ ` e2 : B
Γ ` (App e1 e2) : B

Proposed subtyping rule:
(rat → B) <: rat

Does this proposed rule: maintain the subsumption principle, or

X violate it (example expression: (Lam x (Num 0)))

where B = pos

15

