
CPSC 311: Types (DRAFT)
(“lec-types”)

Joshua Dunfield
University of British Columbia

October 6, 2016

“You must always ask yourself: What kind of an animal is it? Is it a function? Is it a
set?”

—Prof. Maria Balogh

1 Topics discussed

• why use types?

– stop bad things from happening

– make sure that good things will happen

• classifying errors

• catching errors statically vs. dynamically

• typed vs. untyped languages; safe vs. unsafe languages:

• catching bugs with Haskell’s type checker; not catching bugs with Haskell’s type checker

• refined type systems

• object-oriented languages

• disadvantages of typed languages

2 “Static” vs. “dynamic”

A language consists of syntax and semantics. Semantics consists of dynamic semantics (perhaps
defined using a big-step semantics e ⇓ v or a small-step semantics e1 −→ e2) and static semantics.

What makes something static or dynamic?
A simplistic model—which mostly made sense in the 1960s—is that “static” means “at compile

time”, and “dynamic” means “at run time”. If our language is implemented by an interpreter, rather
than a compiler, this model becomes:

• “static” means “before running the program”, and

• “dynamic” means “while running the program”.

So in our Fun implementations, “static” would mean “before starting interp”, and “dynamic”
would mean “while running interp”.

Under this model, we can say that, in Fun:

1 2016/10/6

§1 Topics discussed

• syntax checking is static (because it happens inside parse, which runs before interp); and

• arithmetic is dynamic because numbers are added and subtracted inside interp, but not
inside parse).

Besides arithmetic, many other operations are dynamic, such as function calls and Pair-case.
Most language implementations, especially highly engineered compilers, muddy this model.

For example, any “serious” C compiler, given code that looks like

i += (15 * 1024);

will generate the same machine code as it would for

i += 15360;

The compiler knows that the result of 15 * 1024 cannot change, so it does the multiplication at
compile time.

Similarly, I would expect that good C compiler would1 generate the same code from

i += 1024;

i += 1024;

as from

i += 2048;

The compiler knows that adding 1024 twice is the same as adding 2048 once.

i += 1024;

if (i == 0) {

i += 1024;

} else {

i += 1024;

}

I would also expect a good compiler to optimize the above code: the compiler would analyze the
“then” and “else” branches, see that they are doing the same thing, and generate code that doesn’t
test i at all. This is a form of static analysis.

3 Prevention

The most important kind of static semantics is typing, sometimes known as static typing. We’ll see
later that typing can be defined through rules.

What’s the point of typing? I know two good answers to this question. I like one of these
answers better, but first I’ll give the more popular answer.

Safety: Typing stops bad things from happening, by telling you that they could happen, and not
letting you run your program.

1Subject to certain conditions; if I remember correctly, if i is declared to be volatile, the additions must be done
separately.

2 2016/10/6

§3 Prevention

3.1 Errors: a renewable resource

What kinds of bad things can happen in programs? As you know, there are many such animals.

• Syntax errors: missing “)”, missing semicolon, missing keywords, extra keywords, “illegal
string literals”, . . .

• Scope errors: “unbound identifier”, “unknown variable”, “duplicate definition for identifier”,
. . .

Anything that doesn’t match the language’s BNF is a syntax error. A program with a scope error
matches the BNF, so it’s (usually?) not considered a syntax error.

Syntax and scope errors are pretty universal in programming languages. Other kinds of errors
depend on the language; a language without arrays, for example, won’t have array bounds errors.

• Agreement errors and “mismatches”: The terminology, and the specific error messages, for
these errors depend very much on the language; here are some examples:

- 3 + "a";

stdIn:1.1-1.8 Error: operator and operand don’t agree [literal]

operator domain: int * int

operand: int * string

in expression:

3 + "a"

> (+ 3 "a")

+: contract violation

expected: number?

given: "a"

argument position: 2nd

other arguments...:

3

> ((lambda (x) x) 'a 'b)
⊗ #<procedure>: arity mismatch;
the expected number of arguments does not match the given number

expected: 1

given: 2

arguments...:

'a
'b

These are sometimes called type errors, but I would like to use that term in a more specific
way, so I’ll try to avoid using it for now.

• Array bounds error: trying to access an element outside an array.

• Not returning anything: writing a procedure that’s meant to return a value, but doesn’t
(happens to me in Python).

3 2016/10/6

§3 Prevention

Each language gets to decide what counts as an error. For example, writing "a" + "b" is not
an error in Python, but (+ "a" "b") is an error in Racket. Writing (+ 1 0.5) is not an error in
Racket, but 1 + 0.5 is an error in SML (it doesn’t let you mix integers and floats).

Division by zero is almost always an error—but if you really wanted to, and if you have no
respect for algebra, you could define a language in which division by zero returned zero.

Integer overflow is an error in many languages, but not all. Some earlier lecture notes discussed
C’s overflow behaviour; to summarize, overflow on C’s unsigned int is supposed to “wrap around”,
but C doesn’t specify what should happen if you overflow on a (signed) int. We could reasonably
say that a C program that overflows a signed int has a bug, since the definition of C doesn’t specify
what that program will do, but C does not specify that it is an error.

An error is a failure that is somehow caught and reported, though not necessarily reported in a
clear or helpful way. Thus, in Python, not returning from a function is not an error: the function
will return None. This is well-defined, but not what I wanted to do. In C, not returning returns an
unspecified value (I think?); again, not an “error”.

3.2 Warnings

Language implementations often try to help programmers by giving “warnings” for code that is
likely to be wrong, but doesn’t do anything the language actually forbids. For example, gcc has
many kinds of warnings, some of which can be extremely useful. To me, many of these warnings
are only to compensate for C’s design flaws, but some warnings are useful even in languages I like
better. OCaml can warn you when you use OCaml’s let (like Racket’s let) to bind an identifier
that you never use, which catches quite a few bugs.

3.3 When are errors caught?

With some idea of what an error is—something that is caught, or reported—we can ask: when are
errors reported?

As usual, it depends on the language, but we can make some generalizations that are (almost)
always true:

• Syntax errors are caught during parsing.

• Scope errors are often caught during parsing, but not always; Racket doesn’t catch them
until you either run your program or click “Check Syntax” (though DrRacket’s “Check Syntax”
checks for a few kinds of errors that aren’t usually considered syntax errors).

Beyond syntax and scope errors, it depends entirely on the language.

• Agreement errors and mismatches: Caught at run time in Racket and Python; caught at
compile time in C, SML, OCaml, Haskell. (Java catches many of these at compile time, but
not all.)

• Array bounds error: Caught at run time in Racket, Python, Pascal, Java, SML, OCaml,
Haskell; (mostly) caught at compile time in some “cutting-edge” (last 20 years) research
languages.

C’s behaviour is almost entirely undefined; a program reading or writing outside an array may
crash (“segmentation fault”, “bus error”, etc.) or continue unpredictably (or too predictably,
as with countless viruses that exploit “buffer overruns”).

4 2016/10/6

§3 Prevention

• Not returning anything: Caught at run time (sometimes?) in Racket; caught at compile time
in Java, SML, OCaml, Haskell. (Not an error in Python, C, C++.)

3.4 Types: raising errors earlier than run time

The most popular purpose of a type system is to prevent “agreement errors and mismatches”, such
as applying a list to a function (rather than applying a function to a list) or using + to add things that
can’t be added. We can specify a type system with rules (in fact, this is much closer to Gentzen’s
motivation—formal proofs—than using his notation to specify dynamic semantics), which guide
the language implementor at compile time, rather than run time.

It doesn’t make sense to talk about “compile time” unless there’s a compiler. So, to cover both
compilers and interpreters, we’ll say that types catch errors statically, and that a type system is part
of the static semantics of a language.

The part of a language implementation that checks the abstract syntax of a program, to see
whether it violates the type system, is called a type checker.

Often, the type checker is checking expressions (or statements, etc.) against type declarations
written by programmers. But some languages don’t require programmers to write types (or to write
only a few types). In these languages (e.g. Haskell), the type checker is sometimes called a type
inferencer, because it infers types the programmer didn’t write. The line between “checking” and
“inference” is fuzzy, so I use “type checker” for all typed languages, even languages that infer types.

In an interpreter for a typed language, types are checked after parsing (so the type checker
can work with abstract syntax instead of concrete syntax), but before running the program. In a
compiler for a typed language, types are checked before the compiler generates machine code.

3.5 What about C?

The C language (and C++) don’t fit neatly into the “typed”/“untyped” space. If you’ve written
many C programs, you know that C compilers like to complain about type mismatches—so C must
be typed, right?

Without getting mired in terminological disputes, that question has two reasonable answers:

• C is not typed, because a program that passes the type checker may still do (clearly) bad
things, such as segfault; and this is unlike Java, SML, and Haskell.

• C is typed (C compilers complain about type errors!), but not safe, because (as an example)
C never checks for array bounds errors. (Sometimes, C is called “weakly typed”.)

If we like the second answer better, we can classify languages along two dimensions: typed vs.
untyped, and safe vs. unsafe. Then we would say that

• C is typed but unsafe;

• Java is typed and safe;

• SML, OCaml, and Haskell are typed and safe;

• Racket, JavaScript, and Python are untyped but safe;

• assembly language is untyped and unsafe.

5 2016/10/6

§3 Prevention

These distinctions are explained pretty well by Luca Cardelli, in the first few pages of a paper
(http://www.lucacardelli.name/Papers/TypeSystems.pdf). I encourage you to read it (the
first few pages, not necessarily the whole paper!), though I can’t promise that my terminology will
always be the same as his.

Most “scripting languages” are untyped and safe.

Question: What if we implement a safe language using an unsafe language? For example,
bash, which is safe, is written in C, which is unsafe. What if the bash interpreter segfaults?

I wouldn’t say this makes bash unsafe. Rather, the implementation of bash has a bug. I haven’t
read the definition of bash, but unless it says that some behaviour is unspecified, any interpreter
that segfaults is not consistent with the definition.

This goes for compilers as well: a Racket compiler might have a bug that causes it to generate
machine code that segfaults, even though Racket is safe, so programs should never segfault.

(A more subtle case is when a language’s implementation is consistent with the language’s
definition, but the language’s definition is wrong. For example, a compiler that follows an “obvious”
definition of type polymorphism may generate unsafe code. I mentioned determinism in previous
lectures as an example of a good property of a language’s definition; an arguably more important
property is type safety, which we’ll cover later.)

4 Good things aren’t happening, and I don’t like that either

I said that safety—stopping errors from happening, or rather, reporting errors statically (before you
run the program) rather than dynamically (while the program is being run, either by you, or by an
unhappy user), is the most popular reason to use a typed language.

Another reason, which I think is more interesting, is to ensure that things you want to have
happen actually will happen.

When you write a helper function, you (should) write a comment with a “signature” that de-
scribes what kind of animals the function expects as input, and what kind of animal it produces as
output.

;; match-length : string string → natural
;; interleave : (listof any?) (listof any?) → (listof any?)
;; contains-sequence : (list-of symbol?) (list-of symbol?) → boolean?
;; truth-or-lie? : Bool-expr → boolean?

Unfortunately, in Racket, these signatures are merely comments. Racket is not typed, so it
doesn’t check whether any of these signatures match the function you actually wrote.

You can see some inconsistency in our style, in fact: is it “listof” or “list-of”? Or maybe
we should put a question mark after Bool-expr. After all, Bool-expr? is an actual Racket/PLAI
function, as is boolean?. But natural isn’t (even with a question mark). These signatures are not
part of the Racket language, so they are useful documentation, but Racket doesn’t check whether
that documentation is accurate.

In contrast, in a typed language, the signatures you give actually matter to the language. If we
write interleave in Haskell:

interleave :: [Int] -> [Int] -> [Int]

interleave [] list2 = list2

6 2016/10/6

http://www.lucacardelli.name/Papers/TypeSystems.pdf

§4 Good things aren’t happening, and I don’t like that either

interleave list1 [] = list1

interleave (first1:rest1) (first2:rest2) = first1:first2:(interleave rest1 rest2)

-- ^ Haskell ":" is like Racket "cons"

main =

do

putStrLn (show (interleave [1, 3, 5, 7] [2, 4, 6, 8, 9]))

the type annotation (or type declaration, or type signature) on the first line guarantees that the
Haskell type checker will make sure—assuming interleave is passed two lists of integers—that
every clause of the definition will evaluate to a list of integers. It will also check that, when we call
interleave on the last line, that we are passing lists of integers. All of this happens after parsing,
not when we run the program.

When the Haskell program is run, it doesn’t have to check whether the second argument of cons
(spelled “:” in Haskell) is a list: it will be a list, because the type checker accepted the program.
Here, we are still in the category of “stop bad things from happening”.

Quite a few mistakes will be caught by Haskell’s typechecker. For example, if we wrote

interleave :: [Int] -> [Int] -> [Int]

interleave [] list2 = list2

interleave list1 [] = list1

interleave (first1:rest1) (first2:rest2) = first1:first2:(interleave rest2)

Haskell will complain, because we applied interleave to one argument rather than two. (Ac-
tually, it will complain because (interleave rest2) returns a function of one argument, and a
function of one argument is not a list.)

But many other mistakes will not be caught. We might forget to cons first2:

interleave :: [Int] -> [Int] -> [Int]

interleave [] list2 = list2

interleave list1 [] = list1

interleave (first1:rest1) (first2:rest2) = first1:(interleave rest1 rest2)

This will not be caught: the type annotation demands that interleave return something of
type [Int], a list of integers, and first1:(interleave rest1 rest2) has that type.

All mainstream typed languages (including Haskell and SML) are limited in what their type
systems can check. The specific limits vary from language to language. Haskell (or rather its most
popular compiler, GHC) has developed a rather powerful, but complicated, type system; SML has a
simpler type system than Haskell.

What I said above—that Haskell will check “that every clause of the definition will evaluate to a
list of integers”—is not entirely accurate. We will make this kind of statement accurate, and more
precise, over the next few weeks. This should also illuminate the line between “preventing bad
things” and “ensuring good things”.

4.1 Refined type systems

While popular typed languages are limited in what their type systems can check, many experimental
typed languages push these limits—sometimes amazingly far. What if we could write, in the type

7 2016/10/6

§4 Good things aren’t happening, and I don’t like that either

annotation for interleave, that the length of the list it returns is equal to the sum of the lengths
of its arguments? This is within the power of modern Haskell, and of several recent experimental
languages.

What if we could write that interleave should return a list whose elements are a permutation
of the elements in its arguments? This is (I believe) beyond Haskell, at least for now.

5 Object-oriented languages

Like functional languages, some object-oriented languages are typed, and some are not. The one
you’re probably most familiar with, Java, is typed. Java’s type checker catches many mistakes, but it
catches fewer mistakes than Haskell or SML programmers might like. We will explore this in future
lectures, but a short, vague explanation is that object-oriented languages assume an “open world”:
given a particular class, say DoorLock, we can declare subclasses of DoorLock representing new
kinds of locks. We don’t know in advance how many subclasses of DoorLock will be created. Back
in the 1990s, Java was motivated by the desire to send Java programs over the Internet, with the
expectation that a program written by the original DoorLock author might interact with subclasses
of DoorLock written by other people around the world.

In contrast, the define-type of PLAI, the datatype declaration of SML, and the data declaration
of Haskell define a “closed world”: a PLAI program cannot add variants to a define-type. This is
what allows PLAI to statically check whether you have missed a branch in a type-case. In Java,
we cannot enumerate all possible subclasses, because our compiled Java program might load new
ones!

6 Typed programs run faster

Another advantage of typing, which slipped my mind until just now, is that an implementation of
a typed language can safely omit some of the checks that would otherwise be required. (Cardelli
calls this economy of execution.) For example, when you evaluate (Add e1 e2), you have to check
that the values that e1 and e2 evaluate to are Nums. This remains true even if you use Num-n to
access the n field of the Num variant: Racket/PLAI will do this check “under the hood”.

In an interpreter, the cost of such checks is almost certainly far outweighed by the difference in
cost between interpreted code and compiled code. So this point in types’ favour is usually raised in
the setting of compiled code. This was a powerful argument for typed languages until the 1990s;
modern hardware architectures have drastically reduced the cost of such checks.

7 Disadvantages of typed languages

Catching errors statically seems better than catching them dynamically. If your program has an
error, you probably want to find out sooner rather than later. But what if the “error” wouldn’t have
actually happened? Consider the program in Section 8.2. Java rejects this program because the
else branch doesn’t have a return. However, we would expect that this won’t matter, because the
test in the if statement will always be true and the then branch, which does have a return, will
be executed.

Whether this expectation is true is another question. Mathematical properties of the reals rarely
hold for floating-point numbers. What if x is +∞? If you use floating-point arithmetic for anything

8 2016/10/6

§7 Disadvantages of typed languages

important, you probably need to become horribly familiar with the IEEE 754 standard. Wikipedia
has the following hint of the horrors lurking within:

https://en.wikipedia.org/wiki/IEEE floating point

• Two infinities: +∞ and −∞.

• Two kinds of NaN: a quiet NaN (qNaN) and a signaling NaN (sNaN). A NaN may carry
a payload that is intended for diagnostic information indicating the source of the NaN.
The sign of a NaN has no meaning, but it may be predictable in some circumstances.

I believe that equality is one of IEEE 754’s unpredictable operations, so I wouldn’t expect chang-
ing the condition to x == x to necessarily solve this issue.

But we could replace the floating-point arithmetic with something more reliable, like integer
arithmetic; the test x == x will always succeed if x is an integer. Then, Java is complaining about
an “error” that is guaranteed not to happen.

When such issues are raised with advocates of typing (and in this situation they will often be
called advocates of static typing, because their opponents claim to support “types”, as long as the
“types” are only checked dynamically), they might respond like this:

• (Appeal to dogma) You shouldn’t write an else branch without a return anyway. Types are
like logic! Types are part of the fabric of the universe! And of course a function should always
return something. (Unless it runs forever. Or raises an exception. Both of which are not
terribly logical. . .)2

• (Appeal to courtesy) You shouldn’t do that, because someone else (such as yourself, a year
later) should be able to read your function and understand immediately that it will return
something. If they need to reason about the if condition to understand why the function will
return something, that’s not immediate.

• (Appeal to simplicity) Maybe the language should let you do that, but it would make the type
system harder to understand, and the type checker harder to implement.

2To be fair, many of the people who are most dogmatic about this are also interested in advanced type systems where
you can prove that your program won’t run forever.

9 2016/10/6

https://en.wikipedia.org/wiki/IEEE_floating_point

§7 Disadvantages of typed languages

8 noreturn examples

8.1 noreturn.c

#include <stdio.h>

int f (int x)

{

x * 2;

}

int main (int argc, char **argv)

{

printf ("noreturn returned: %d\n", f(5));

}

With gcc: no warnings.
With gcc -Wall:

noreturn.c: In function ’f’:

noreturn.c:5: warning: statement with no effect

noreturn.c:6: warning: control reaches end of non-void function

8.2 noreturn.java

public class noreturn {

public static int f (double x) {

if (x == (x + 0.1 - 0.1)) {

return 0;

} else {

// return 1; // even when there is a return in the then-branch,

// Java rejects this program because

// there’s no return in the else-branch.

}

}

public static void main(String[] args) {

System.out.println(f (5.0));

}

}

10 2016/10/6

	
	
	
	Errors: a renewable resource
	Warnings
	When are errors caught?
	Types: raising errors earlier than run time
	What about C?

	
	Refined type systems

	
	
	
	
	noreturn.c
	noreturn.java

