
CPSC 311: Taxonomy of languages (DRAFT)
(“lec-taxonomy”)

Joshua Dunfield
University of British Columbia

October 3, 2016

1 Topics discussed

• categorizing syntax: “formal languages”; “C-like”; Algol-60

• categorizing semantics

• orthogonal language features

2 Categorizing languages: syntax

A language consists of syntax and semantics. Semantics consists of dynamic semantics (perhaps
defined using a big-step semantics e ⇓ v or a small-step semantics e1 −→ e2) and static semantics.
We’ll jump into static semantics later this week.

I’m not very interested in syntax. However, syntax can be classified (somewhat) usefully using
the theory of formal languages, in which “language” refers only to syntax: a “language” in that sense
is simply a set of strings that are considered syntactically valid. Languages, or rather syntaxes, can
be organized into the Chomsky hierarchy, first with regular languages, then context-free languages,
then context-sensitive languages, and finally unrestricted languages. Each level in the hierarchy has
a corresponding kind of automaton that recognizes that language, that is, the automaton determines
whether the string is in the language (is syntactically valid). (Finite automata can recognize regular
languages, pushdown automata can recognize context-free languages. . . ) This is of relatively little
interest to me, partly because even large programming languages have context-free syntax.

“BNF” is a specific notation for writing a context-free grammar.
(This general rule that PLs have context-free syntax has some exceptions. Parsing Perl is not

context-free, because it’s undecidable: http://www.perlmonks.org/?node id=663393.)
Less formally, categories such as “C-like syntax” and “Lisp-like syntax” are easily recognized

by humans, but carry little information: C, Java, and JavaScript all have C-like syntax, but their
semantics are extremely different.

Algol-60 had the idea, now largely forgotten, of explicitly distinguishing the notation used in
the language definition from the notation that programmers would type in (to the punch-card
writer). This was partly because there was no broadly recognized standard character encoding—
ASCII wasn’t defined until 1963—but it meant that Algol-60 didn’t try to forbid programmers from
using certain “reserved words” or “keywords”, because the language’s creators assumed that each
Algol compiler would define its own mapping from the “local” notation to the Algol notation used
in the report.

This idea was spurred by a violent disagreement about decimals; see Wexelblat, History of
Programming Languages (I) (1981), p. 126. If this idea hadn’t been forgotten, we might now be
using editors and IDEs that could automatically switch between keywords in English and keywords
in other languages. And perhaps between decimal separators.

1 2016/10/3

http://www.perlmonks.org/?node_id=663393


§1 Topics discussed

3 Categorizing languages: semantics

If we can’t usefully categorize syntax, what about semantics?
Yes, but maybe not with the usual categorization. Let’s try the usual one anyway.

Procedural Object-oriented Functional Logic

Fortran Simula Racket Prolog

2 2016/10/3







§3 Categorizing languages: semantics

4 Categories: fuzzy at best

Essentially no languages fit neatly into these categories.
Explicitly “hybrid” languages, like OCaml (functional + OO), Mercury (functional + logic),

should be expected to fall into more than one category, but really, no language fits neatly into these
categories.

Everyone agrees that Racket is functional, but it has mutable data—but mostly not by default.
Same for Standard ML and OCaml. In Lisp, mutable data is (was?) default, but Lisp otherwise
“feels” functional?

Haskell doesn’t have mutable data. . . but a lot of machinery, idioms, and libraries have been
developed (and are extensively used) to let Haskell programmers pretend that it does!

OCaml has objects, but you don’t have to use them and lots of OCaml programmers never do
C and C++ have everything mutable by default, but you can write const.
Java has “base types”, like int, that aren’t object-oriented at all.
Some OO languages (Self, Go?, . . . ?) don’t have classes.
So these categories are really about default behaviours, and (even more) about what program-

mers actually do most of the time:

• C programmers tend to use mutation, even when they don’t have to.

• Racket, SML, OCaml programmers tend to avoid mutable state “by default”.

• OCaml programmers tend to avoid using objects.

• Java programmers (I assume?) tend to use objects even when they could use base types.

• Curiously, Haskell programmers seem pretty fond of the machinery developed to let them
pretend that Haskell has mutable state. . .

5 2016/10/3



§4 Categories: fuzzy at best

5 Categorizing particular language features

Accepting that the categories listed above only suggest a kind of probability distribution on whether
a particular feature is present, or how a particular feature works, we can instead ask smaller, more
specific questions, like “what evaluation strategy does language X use?”

But we should be aware that we’re probably asking “what is the default evaluation strategy in
language X?” For example, Scala lets you use the expression strategy, but only if you explicitly ask.
Racket and SML use the value strategy, but it’s not hard to simulate the expression strategy, just
slightly annoying. Haskell uses lazy evaluation (related to the expression strategy), but you can get
the value strategy by explicitly asking for it.

With that caveat, we can ask specific questions about “real” mainstream (and, usually, impre-
cisely defined) languages, and learn something (even if it’s not truly precise) by comparing their
features to the “equivalent” features in a small, idealized language like Fun++.

(I would be very comfortable putting Fun and Fun++ under the “Functional” heading.)

5.1 Categorizing Fun’s variables

In addition to the value strategy (commonly known as “call by value”) and expression strategy
(commonly known as “call by name”) for functions, we can consider whether Fun[++] has mutable
state. Here, we can comfortably say it doesn’t, because we can (and have) defined the dynamic
semantics of Fun using substitution. When we substitute for the identifier bound by a lam, that
identifier disappears, leaving no trace of its existence. In the body after substitution, we can’t tell
which expressions resulted from substituting for x and which expressions didn’t. When we apply

(Lam x (Add (Id x) (Num 1)))

to (Num 1), substitution gives
(Add (Num 1) (Num 1))

which has no sign of which (Num 1) was originally (Id x).
So we can conclude that Fun’s variables (identifiers) are immutable, and that adding mutable

variables would require us to change the semantics. (We will almost certainly do this later in 311.)

5.2 Categorizing Fun’s functions

Functions are classified according to how “first-class” they are—essentially, whether they are values
that can be passed around and used to construct other values (like integers can be passed around
and used to construct other integers, or binary trees can be passed around and used to construct
other binary trees).

(“First-class” is standard terminology, but misleading, because it suggests that a “first-class func-
tion” is somehow special, when it’s really the opposite: a first-class function is a completely ordinary
value. It’s languages without first-class functions that have separated their functions from the rabble
of ordinary values.)

Here, we again have a clear answer: functions in Fun are values, with no restrictions: they can
be passed as arguments to other functions, and returned as results. As we add features to Fun, we
should verify that they’ve kept this status. For example, the pairs in Fun++ don’t affect this status,
because pairs can hold any values, including functions.

6 2016/10/3



§5 Categorizing particular language features

When two language features do not interfere with or affect each other, we can say they are
orthogonal, by a kind of geometric analogy. This is a vague definition, but I don’t know of a better
one. More precisely, we can say that two features are defined orthogonally if their definitions are all
independent. (Warning: I think this is what other people mean by “defined orthogonally”, but I’m
not completely sure. I’m pretty sure that this is a useful definition.)

Independence is not an entirely precise notion. Some cases are pretty clear: in Fun, functions
and numbers are defined independently, because none of the rules for numbers and arithmetic
mention any of the abstract syntax for functions, and none of the rules for Lam and App mention
any of the abstract syntax for numbers.

Some cases are less clear. I want to say that in Fun, functions and Let are defined indepen-
dently, because—again—the rules for functions don’t mention Let, and the rule(s) for Let don’t
mention Lam and App. You could argue that both functions and Let depend on the definition of
substitution. . . which mentions all the variants of the abstract syntax.

Exercise 1. Which new features in Fun++ (Assignment 2) are independent of which other
features? (Because independence is not really precise, no answer can be perfectly right or perfectly
wrong.)

Earlier, I almost said “when two language features do not interact with each other”, but that
could be misleading. Fun++ allows you to mix functions and pairs as much as you like: a function
can take a pair as an argument, the pair can contain functions, and you can return a pair of func-
tions. This demonstrates a key benefit of orthogonal designs: the combination of features, though
defined separately, leads to a language that “subsumes” (maybe with a little added sugar) other,
non-orthogonal features. If you can pass pairs as arguments, you are very close to allowing func-
tions that take multiple arguments. But you got there by starting with the simplest possible form
of function (a single argument to a single result), rather than saying, “well, we’ll make functions
take different numbers of arguments, so we have to think about whether a given function is being
called with the right number of arguments. . . ”.

Exercise 2. Given Fun plus pairs, how would you add multiple-argument functions as syntactic
sugar?

Exercise 3. Given Fun without pairs, could you add multiple-argument functions as syntactic
sugar? If so, how?

7 2016/10/3


	
	
	
	
	
	Categorizing Fun's variables
	Categorizing Fun's functions


