CPSC 311: Subtyping for refs (DRAFT)
(“lec-subtyping-ref”)

Joshua Dunfield
University of British Columbia

November 15, 2016

| Subtyping, so far
Type A is a subtype of type B

Al<: A2 A2<: A3

Sub-refl Sub-trans ——— Sub-pos-int ———— Sub-int-rat
A<: A Al <: A3 pos <: int int <: rat
Al <: B1 A2 <: B2 B1<: Al A2<: B2
Sub-product Sub-arr
(A1 xA2)<: (B1xB2) (A1 — A2) <: (B1 — B2)

2| Typing for refs
Under assumptions I', expression e has type A

N-e:A A<:B MNx)=A
Type-sub —— Type-var
'e:B N-=(dx):A
op:AlxA2 - B I-el:Al I-e2:A2 ]
Type-num - Type-binop
' (Numn) : num ' (Binopopele2):B
Type-false Type-true
I' - (Bfalse) : bool P ' (Btrue) : bool P
't e: bool I'-eThen: A I'-eElse: A )
Type-ite
't (Ite e eThen eElse) : A
x:A,'FeBody:B '-el:A—B N-e2:A
Type-lam Type-app
'k (Lamx A eBody): A — B I'-(Appele2):B
I'-el:Al '-e2:A2 o T'Fe:AlxA2 x1:Al,x2:A2,T+ eBody: B )
- Type-pair - Type-pair-case
' (Pairel e2): Al x A2 '+ (Pair-case e x1 x2 eBody) : B
'-e:A x:A,T'FeBody:B u:B,T'Fe:B
Type-with Type-rec
'+ (Let x e eBody) : B '(RecuBe):B
'Fe:A 'e:refA 'Fel:ref A N-e2: A
Type-ref Type-deref Type-setref
' (Refe):ref A 't (Derefe): A 't (Setref el e2) : A

1 2016/11/15



§1 Subtyping, so far

Following the pattern of product types, we might write a covariant rule for references:

A<:B
(ref A) <: (ref B)

??Sub-ref

By this rule, (ref int) <: (ref rat). However, if you expect something of type ref rat and I give you an
expression of type (ref int), you can use Setref to replace the reference’s contents with 3.5 (because,
to you, it is a ref rat and you can assign any rat to it).

So we might try contravariance:

B<: A
(ref A) <: (ref B)

??Sub-ref-2

Now, however, if you expect something of type (ref int) and Deref it, expecting an int, you may be
disappointed: By ??Sub-ref-2, (ref rat) <: (ref int). But the contents of (ref rat) could be 3.5 or any
rational number, not necessarily an integer.

The covariant rule ??Sub-ref works fine with Deref, but not with Setref; the contravariant rule
??Sub-ref-2 works fine with Setref, but not with Deref. So the covariant rule enforces a necessary
condition for Deref, and the contravariant rule enforces a necessary condition for Setref. Therefore,
a correct rule is:

A<: B B<: A
(ref A) <: (ref B)

Sub-ref

which enforces both conditions.

(We might try to “optimize” this rule by replacing the premises with A = B. That’s probably
okay for this type system, but doesn’t work for all type systems, so I'd rather leave it as is.)

The following may be a useful additional explanation, particularly if you understand contravari-
ant subtyping for function types A1 — A2. We can think of a reference as an object with two
methods, called Deref and Setref:

* The Deref “method” has no arguments (we are thinking of this, for the moment, as a class
method, so the reference to “self” or “this” is implicit), and returns (for a reference of type
(ref A)) a value of type A.

So we can think of the type of Deref as () — A, where () represents taking zero arguments.

* The Setref “method” takes one argument, of type A (assuming the reference has type (ref A)).
It also returns the value of the argument. So we can think of the type of Setref as A — A.

Thus, the Deref “method” has type () — A and Setref has type A — A. According to the con-
travariant rule for functions, Sub-arr, we can compare the types of the Deref method of a reference
of type (ref A) and the Deref method of a reference of type (ref B) as follows:

O<:() A<:B
(0= A)<: ()—B)

Sub-arr

The second premise here matches the covariant premise of Sub-ref. (Regardless of whatever () is,
exactly, the first premise is derivable using Sub-refl.)

2 2016/11/15



§2 Typing for refs

For Setref, we get
B<: A A<: B

(A— A)<: (B—B)

Sub-arr

The second premise here is something of an accident: we happened to decide that Setref should
return the new contents just written to the reference. If we said, instead, that Setref returned
“nothing”, which we seem to be writing as (), then we would have

B<: A O<: ()
(A—=(0)<:(B—=10()

Sub-arr

2.1 Upper bounds

Something I hadn’t thought of by Monday’s lecture: there are a few more places where we need to
use Type-sub. We need to use it in Type-ite; otherwise, typeof will return false for the expression

(Ite (Btrue) (Num 1) (Num —1))

This is because (Num 1) has type pos, and (Num —1) has type int, but pos # int. So when we
implement Type-ite, we need to find the upper bound of the types of the eThen and eElse branches:

' e: bool ['+eThen: A '+ eElse: A
' (Ite e eThen eElse) : A

Type-ite

'He:B B = bool 'k eThen: Al 'k eElse: A2 Al =A2
' (Ite e eThen eElse) : Al

Type-ite

~e:B B <: bool '+ eThen: Al Al<: A ' eElse: A2 A2<: A
' (Ite e eThen eElse) : A

Type-ite*

This last version of Type-ite, marked *, is really just the original Type-ite with three uses of Type-

sub:
'e:B B <: bool 't eThen: Al Al<: A 't eElse: A2 A2<: A
Type-sub Type-sub Type-sub
' e: bool 'HeThen: A ' eElse: A )
Type-ite

' (Ite e eThen eElse) : A

That is, Type-ite* is an easier rule to implement, but Type-ite* isn’t adding any power to the type
system. (It's harder, actually, to prove that Type-ite* isn’t taking anything away from the type
system. But I'm pretty sure it isn’t.)

I wrote a function upper-bound that takes two types A and B, and returns A if B <: A, and B
if A <: B. See a5.rkt.

3 2016/11/15



	
	
	Upper bounds


