
CPSC 311:
State (DRAFT)

(“lec-state”)

Joshua Dunfield

University of British Columbia

November 18, 2016

1 State

All of our Fun dialects have had only immutable bindings: During evaluation, once an identifier is
bound to an expression, its meaning cannot change—it will have the same meaning as long as it is
in scope (and not shadowed by another binding).

1.1 Classifying languages

Many languages have mutable state in some form:

• By default, and idiomatic: Fortran, Algol-60, Lisp, C, C++, Java, Smalltalk, . . .

• By default, but less idiomatic: Racket

• Not by default: Standard ML, OCaml

• By simulation: Haskell

The line between “functional” and “imperative” is fuzzy, but I think most people would draw
it somewhere around Racket. The line between “purely functional” and “impurely functional”—
purity meaning a “lack of side effects (such as state)”—is usually drawn between ML and Haskell.
That line is also subject to debate, however.

Starting from the top of the list, in languages like Java, most features are mutable by default
(unless const is given).

Racket occupies a strange position in this space: fundamental binding operations like define
and let are mutable, but “good Racket style” discourages you from exploiting this. A few language
features in Racket, including lists, are genuinely immutable by default (Racket also has mutable
lists, but not by default; as we saw in our discussion of classifying languages, different languages
often provide the same behaviours and differ only in which behaviour is the default).

The ML languages are fairly consistent in being immutable by default. A value bound by a let

in SML or OCaml cannot be mutated. Both languages do have features similar to Racket’s boxes,
but these must be used explicitly; the default is immutability. An exception that puts OCaml slightly
nearer the top of the page: strings are mutable, as you can see from the following interaction with
OCaml.

1 2016/11/18

§1 State

let s = "abcd" ;;

val s : string = "abcd"

String.set s 2 ’r’ ;;

- : unit = ()

s ;;

- : string = "abrd"

(2016 update: I believe this has been changed in the latest version of OCaml.)
Haskell is usually considered “pure” or “purely functional”, though there is debate about this

too, partly because some people argue that nontermination is a side effect. In practice, Haskell has
ample support (features like the appallingly named “monads”) for an imperative style of program-
ming. (As an aside, the techniques used to implement Haskell depend on mutable state!)

1.2 Defining state

The particular form of state we’ll add to Fun is called references (using the ML terminology). A
reference or ref is essentially a pointer to a cell (or “ref cell”) whose contents can be mutated.

Modelling refs in a dynamic semantics requires significant changes. Now that we have an
environment-based semantics, the environment env might seem to be a logical place to store the
current contents of ref cells. That turns out to be a bad idea—we want the state of ref cells to
survive a lexical scope, but not the state of binders (see the question below)—so instead we’ll
create a new animal, a store S. Like an environment, a store is basically a list:

Stores S ::= ∅ empty store
| `.v, S location ` points to cell with contents v, followed by store S

Let’s extend the concrete and abstract syntax.

Expressions 〈E〉 ::= . . .
| {Ref 〈E〉}
| {Deref 〈E〉}
| {Setref 〈E〉 〈E〉}

The intended semantics is:

• {Ref 〈E1〉} evaluates 〈E1〉 and returns the location of a new cell (think of a location as a
pointer);

• {Deref 〈E1〉} evaluates 〈E1〉, which must evaluate to a location, and returns the contents of
the cell at that location;

• {Setref 〈E1〉 〈E2〉} evaluates 〈E1〉, which must evaluate to a location `, then evaluates 〈E2〉
and puts that resulting value into the cell at location `.

The abstract syntax is extended correspondingly:

(define-type E

...

[Ref (initial-contents E?)]

[Deref (loc-expr E?)]

[Setref (loc-expr E?) (new-contents E?)]

2 2016/11/18

§1 State

We aren’t quite done, though: a Ref is how we create a new cell, not a pointer to a new cell. So
we need one more variant:

(define-type E

...

[Ref (initial-contents E?)]

[Deref (loc-expr E?)]

[Setref (loc-expr E?) (new-contents E?)]

[Location (locsym symbol?)]

Racket has a built-in function called gensym that we’ll use when we need a new location, to get
a “fresh” symbol.

The point of a store is that its contents are mutable: evaluating an expression may change the
store. So we need both an input store and an output store.

env;S ` e ⇓ v;S ′ Starting in environment env and store S,
evaluating e produces value v and updated store S ′

env;S ` e ⇓ v;S1

env;S ` (Ref e) ⇓ (Location `); `.v, S1
??SEnv-ref

What is `? It really doesn’t matter, as long as it isn’t already in S1. The judgment “` fresh for S1”
means that ` is not already mapped by S1.

` fresh for S1 env;S ` e ⇓ v;S1

env;S ` (Ref e) ⇓ (Location `); `.v, S1
SEnv-ref

When a new feature (like Ref) leads us to change the judgment form, we need to check two things:

• We can write rules for the new features.

• We can update the rules for old features.

We seem to have a rule for the new feature Ref, so we should try to update an old rule. We’ll
do the rule for Pair. We first need to update Eval-pair to use environments. Since pairs don’t bind
identifiers, this is straightforward:

env ` e1 ⇓ v1 env ` e2 ⇓ v2

env ` (Pair e1 e2) ⇓ (Pair v1 v2)
Env-pair (stateless version)

env; S ` e1 ⇓ v1 ;S1 env; S1 ` e2 ⇓ v2 ;S2

env; S ` (Pair e1 e2) ⇓ (Pair v1 v2) ;S2
SEnv-pair

This version of Env-pair says that, to evaluate a pair, we first evaluate e1 under the given store S,
producing a (possibly) changed store S1; then, we evaluate e2 under S1, producing another store
S2, which is the store produced by the entire evaluation of (Pair e1 e2).

Following this pattern of passing stores along from premise to premise means that when we
draw a derivation tree, and draw a line (really a curve) from the conclusion’s starting store (to the

3 2016/11/18

§1 State

left of the turnstile `) to the conclusion’s result (to the right of the semicolon), the line looks like a
thread. The store is “threaded through” the derivation tree.

Unlike previous evaluation rules for Pair, SEnv-pair specifies that an interpreter must evaluate
the two expressions e1 and e2 in a particular order. The expression e2 cannot be evaluated before
e1, because we need to evaluate e1 to know what S1 is.

(Adding the full, tedious set of error-handling rules to the old big-step semantics, or to the
environment-based semantics without state, would also enforce this order. But now, it is enforced
within the non-error rule. Small-step semantics also enforces this, using evaluation contexts C.)

Before we try to update all the old rules for this different evaluation judgment, we should figure
out how to evaluate the other new features:

` fresh for S1 env;S ` e ⇓ v;S1

env;S ` (Ref e) ⇓ (Location `); `.v, S1
SEnv-ref

env;S ` e ⇓ (Location `);S2 lookup-loc(S2, `) = v

env;S ` (Deref e) ⇓ v;S2
SEnv-deref

env;S ` e1 ⇓ (Location `);S1 env;S1 ` e2 ⇓ v2;S2 update-loc(S2, `, v2) = S3

env;S ` (Setref e1 e2) ⇓ v2;S3
SEnv-setref

The idea of update-loc is that update-loc(S2, `, v2) = S3 where S3 is the same as S2, but with `.· · ·
replaced by `.v2. For example, if

S2 = `1.(Num 1), `2.(Num 0), ∅

then
update-loc(S2, `2, (Num 2)) = `1.(Num 1), `2.(Num 2) , ∅

Question: Why do we need a separate store? What goes wrong if we use the environment to
store ref cells?

Because then we would end up with a similar problem as not doing a freeness check during
substitution: we could access an identifier that should be out of scope.

ePair =
(
Pair (Let x (Num 1) (Id x))

(Let y (Num 2) (Id x))
)

Here, the second instance (Id x) is not in the scope of (Let x . . .). But (if the environment contains
ref cells), we have to thread the environment through; otherwise, the second component of the
following pair ePair ′ would be unable to see the effects of the first component. We expect ePair ′

to evaluate to (Pair (Num 1) (Num 1)) because the first component changes the contents of r from
(Num 0) to (Num 1):

ePair ′ =
(
Let r (Ref (Num 0))

(
Pair (Let x (Num 1) (Setref r (Num 1)))

(Let y (Num 2) (Deref r))
))

If we thread the environment through, then in ePair, the binding of (Id x) would survive and could
be used outside its scope; if we don’t thread the environment through, ePair ′ wouldn’t behave as
expected.

4 2016/11/18

§1 State

1.3 First implementation: env-state.rkt

We can define-type Store following the pattern of Env, and update env-interp to take and return
a store. It’s quite irritating, because Racket doesn’t provide great support for returning pairs of
things—I had to define-type Config to represent both an expression—the value v being returned
in env;S1 ` e ⇓ v;S2—and the output store S2. But it can be done, and there are no big surprises.

Some of this could be done more easily in ML or Haskell, because those languages have more
general “pattern matching” than type-case, so adjacent type-cases can be combined in one. We
still have to look up locations in the store, and update a cell by constructing a new store with
different contents for that one cell.

Question: Racket has boxes! Why not just use those, instead of going to all this trouble?
Good question. One answer is that we want to know that our interpreter follows the rules (is

“sound with respect to the rules”). The code is annoying to read, but the correspondence to the
rules is clear. If we use Racket’s boxes as our locations, the code becomes much simpler, but we
have to trust that Racket’s semantics for boxes matches our rules.

I’m pretty sure it does match the rules, which is why I wrote another version of the interpreter
that does use Racket boxes (env-state-direct.rkt—the word “direct” refers to using Racket’s
boxes directly).

Another answer is that, while we can (I think!) use Racket’s boxes to correctly represent Fun’s
refs, we are depending on Racket’s idea of a store being the same as ours. What if we wanted
to allow “time travel” in Fun, where we could “checkpoint” an old store and “rewind” to it later?
Racket—as far as I know—doesn’t have that feature. So we’d need to either figure out how to
checkpoint Racket boxes, or use the env-state.rkt representation where we don’t use boxes.

This leads us to. . .

1.4 Second implementation: env-state-direct.rkt

In this interpreter, the operations on the Store define-type are simply calls to Racket’s unbox and
set-box!. Instead of reflecting the “threading” of the store in our interpreter, we assume that
Racket’s store behaves in that same way. (Again, I’m pretty sure it does.)

2 Translation dictionary

(Section added for lecture, 2016-11-14.)

Racket Fun C C++ Java

allocate (box e) (Ref e) malloc new new

get (unbox e) (Deref e) *e *e e.fld

set (set-box! e) (Setref e1 e2) *e1 = e2 *e1 = e2 e1.fld = e2

The Java column is approximate: a Java object has any number of instance variables, rather
than just one.

5 2016/11/18

	
	Classifying languages
	Defining state
	First implementation: env-state.rkt
	Second implementation: env-state-direct.rkt

	

