
CPSC 311: Small-step semantics: Rules for smallstep.rkt
(DRAFT)

(“lec-smallstep-2”)

Joshua Dunfield
University of British Columbia

October 30, 2016

To define what C means, we’ll use a BNF grammar. We’ve been using BNFs to define the concrete
syntax of languages, but BNFs are versatile and can also be used with abstract syntax. To (hopefully)
clarify that this BNF is describing abstract syntax, not concrete syntax, I’ll follow the convention
I’ve been using in the rules, where we write e, v, n, etc. rather than using angle brackets 〈E〉.

This is also an opportunity to define values v using a BNF:

Values v ::= (Num n)
| (Lam x e)
| (Btrue)
| (Bfalse)

Now, the definition of evaluation contexts:

Evaluation contexts C ::= []
| (Binop op C e)
| (Binop op v C)
| (App C e)
| (App v C)
| (Let x C e)
| (Ite C e e)

The empty brackets [] are called a “hole”. Some examples of evaluation contexts:

(App [] (App e3 e4))

(Binop (Minusop) (Num 5) [])

(App (App [] e1) e2))

1 2016/10/30

e1 −→ e2 Expression e1 steps to e2

Reduction rules:

v1 op v2 = v

(Binop op v1 v2) −→ v
Step-binop (

App (Lam x eB) v
)
−→ [

v
/
x
]
eB

Step-app-value

(Let x v1 e2) −→ [
v1
/
x
]
e2

Step-let

(Ite (Btrue) eThen eElse) −→ eThen
Step-ite-true

(Ite (Bfalse) eThen eElse) −→ eElse
Step-ite-false

(Rec u e) −→ [
(Rec u e)

/
u
]
e

Step-rec

Context rule:

e −→ e ′

C
[
e
]
−→ C[e ′] Step-context

e free-variable-error Trying to step e encounters a free variable

C
[
(Id x)

]
free-variable-error

FVerr-context

Figure 1 Small-step semantics

2 2016/10/30

