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1 Records

The first part of these notes is handwritten:
http://www.ugrad.cs.ubc.ca/∼cs311/2016W1/notes/scan-2016-11-18.pdf

1.1 Record syntax

(See the first scanned page.)
Note the syntactic sugar {Record {x y pos}} for several fields with the same type.
The expression (Dot e y) evaluates e to a record, and returns the field named y.
Field names like x and y are not bindings; they don’t have a scope. The only way to use a field

name is in (Dot e y). If (Id y) appears in the e in (Dot e y), it must be bound in the usual way by a
Let, Lam, Pair-case, etc.

We won’t define substitution for this system, but if we did, the field names would never be
affected by substitution. We would need to substitute within the contents of the fields.

A record with two fields is roughly the same as a pair, if we provided only Fst and Snd for
accessing the parts of the pair, instead of Pair-case. (Something like Pair-case on a record would
be reasonable; in Pascal, a similar feature was called with. Pattern matching in languages like ML
works on records, too.)

Question: Can we have two fields with the same name?
Yes, in different record types. But you shouldn’t make a record with two fields with the same

name. My implementation doesn’t check for this, and it’s probably not too hard, but I don’t want
to commit to saying it’s easy when I haven’t done it.

Records can be nested inside other records, or placed into refs, or used as arguments or results
to functions. We’re designing records as an orthogonal feature: nothing about the record type, or
record expressions, forces us to have any other particular feature in the language. We could have a
language with records but not functions, or with records but not refs, and so on.

1.2 Width subtyping

(See the second scanned page.)
All we can do with a record is access a field using (Dot e y). It shouldn’t matter if other fields

are present; they can’t affect the value of the field y.
Thus, if we define a function (top of the page) that expects, as its argument, a record with one

field x : pos, it should be okay to pass a record with additional fields.
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§1 Records

To do that, we need to use subtyping, so we can show that

(record x:pos, y:pos) <: (record x:pos)

The effect is kind of like subclassing in Java, at least, the part of subclassing that is about adding
instance variables to the subclass that aren’t present in the superclass.

This also (maybe) justifies the rather strange type (record ), which is the type of (record), the
record with no fields: it’s a little like Java’s Object.

1.3 Depth subtyping

Another form of subtyping that’s useful for records is “depth subtyping”, which says that a record
with one field y, of type A, is a subtype of a record with one field y of type B, provided that A is a
subtype of B. This is reminiscent of subtyping for pairs (the Sub-product rule).

1.3.1 Upper bounds

For example, depth subtyping allows us to pass a record of type (record y:pos) to a function that
expects (record y:rat). According to depth subtyping, this is allowed because pos <: rat.

In an earlier version of typeof with subtyping, several branches called a function upper-bound.
For example, the branch for Ite called upper-bound on the types of eThen and eElse. This is
necessary because we might need to use Type-sub. For example, our typing rules show that (Num 3)
has type pos and −5 has type int:

3 ∈ Z 3 ≥ 0
∅ ` (Num 3) : pos

Type-pos
−5 ∈ Z

∅ ` (Num −5) : int
Type-int

But if we try to use the above derivations as the second and third premises of Type-ite, we get stuck:

∅ ` (Bfalse)

3 ∈ Z 3 ≥ 0
∅ ` (Num 3) : pos

Type-pos
−5 ∈ Z

∅ ` (Num −5) : int
Type-int

∅ ` (Ite (Bfalse) (Num 3)︸ ︷︷ ︸
eThen

(Num −5)︸ ︷︷ ︸
eElse

) : ???
Type-ite

Type-ite requires the same type in each branch. On paper (given enough time to think about it),
we can fix this by using Type-sub to “forget” that—in addition to being an integer—(Num 3) is a
positive integer. That gives us the same type, int, for both eThen and eElse, which allows us to
apply Type-ite.

∅ ` (Bfalse)

3 ∈ Z 3 ≥ 0
∅ ` (Num 3) : pos

Type-pos
pos <: int

Sub-pos-int

∅ ` (Num 3) : int
Type-sub

−5 ∈ Z
∅ ` (Num −5) : int

Type-int

∅ ` (Ite (Bfalse) (Num 3)︸ ︷︷ ︸
eThen

(Num −5)︸ ︷︷ ︸
eElse

) : int
Type-ite

In the code for typeof, we don’t have the luxury of thinking about where to use Type-sub. Instead,
we always use the upper bound of the types of eThen and eElse. In effect, typeof is implementing
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a rule that looks like this:
Γ ` e : bool Γ ` eThen : AThen Γ ` eElse : AElse
Γ ` (Ite e eThen eElse) : upper-bound(AThen,AElse)

Type-ite-upperbound

The idea of upper-bound(A1,A2) is that it returns a type that is a supertype of both A1 and A2,
that is, if upper-bound(A1,A2) = B then A1 <: B and A2 <: B.

We actually want it to be the least upper bound: for example, rat is an upper bound of pos and
int, because pos <: rat and int <: rat, but it is not the least upper bound because int is also a
supertype of pos and int.

The earlier version of upper-bound just checked whether one of the types (A1, A2) was a
subtype of the other. It worked for pos and rat, because pos is a subtype of int, and int is a subtype
of rat. for rat and int, because int is a subtype of rat.

1.3.2 Upper bounds of record types

With records, the subtyping relationship is more complicated: (record x:pos, y:pos) is a subtype of
(record x:pos). Also, (record x:pos, z:pos) is a subtype of (record x:pos). But (record x:pos, y:pos) is
neither a subtype of (record x:pos, z:pos), nor a supertype of it.

To compute the upper bound of

(record x:pos, y:pos)

and
(record x:pos, z:pos)

we need to take all the fields in common, that is, {x, y} ∩ {x, z} = {x}; for each of those fields, make
a recursive call to find the upper bound of the types. In this example, there is one field in common,
x, and it has the same type pos, so we take the upper bound of pos and pos, which is pos.

If we compute the upper bound of

(record x:int, y:pos)

and
(record x:rat, z:pos)

we get (record x:rat), because the upper bound of int and rat is rat.

Exercise 1. Suppose we decided to add a language feature

(Setfield e x e2)

that updates the field x in record e with e2. Setting aside the question of how to define evaluation
for Setfield, would width subtyping and depth subtyping still make sense? If not, what kind of
subtyping for records would we need instead?

Exercise 2. Does the implementation of upper-bound in a5.rkt really do what we want? Try
to find an example of types A1 and A2 such that

(upper-bound A1 A2)

returns #false even though, according to the subtyping rules on a5, there is a type B such that
A1 <: B and A2 <: B.

If you find an example that involves record types, try to find another example that does not.

3 2016/11/20



§2 Downcasts

2 Downcasts

A Downcast is an odd expression; certainly, its typing rule (Type-downcast) is odd. It says that if e
has some type B, then (Downcast A e) has type A. It checks that A is a subtype of B. But that’s the
opposite of Type-sub!

A <: B Γ ` e : B
Γ ` (Downcast A e) : A

Type-downcast
env;S1 ` e ⇓ v;S2 ∅ ` v : A
env;S1 ` (Downcast A e) ⇓ v;S2 SEnv-downcast

When (Downcast A e) is evaluated, we check, during evaluation, that the value v resulting from the
expression e inside (Downcast A e) actually does have type A. If v doesn’t have type A, then no
evaluation rule applies, and the interpreter raises an error.

This is motivated by the following example. Suppose we had strings, with an expression
(Idx eStr eIdx) that indexes into eStr. The index eIdx must evaluate to (Num n), and n must
be (1) an integer, (2) positive (n ≥ 0), and (3) less than the length of the string that eStr evalu-
ates to. Since we have a type specifically for positive integers, pos, conditions (1) and (2) can be
enforced in the typing rule for idx via a premise Γ ` eIdx : pos.

Γ ` eStr : string Γ ` eIdx : pos

Γ ` (Idx eStr eIdx) : string
Type-idx

But suppose we have, in our Fun program, an identifer x of type int, and we want to use x to index
into a string. We can use Ite to check whether x is positive (the “else” branch in the expression
shown), so checks (1) and (2) in the interpreter will always succeed.

x : int, s : string `
(

Ite
(
Binop < (Id x) (Num 0)

)
(Str "bad")(
Downcast pos (Idx (Id s) (Id x))

))
: string

Unfortunately, the typing rule with premise Γ ` eIdx : pos doesn’t let us use (Id x) as that index,
because all we know is that x has type int, not that x has type pos.

We can use Downcast to make this work:(
Idx (Id s) (Downcast pos (Id x))

)
The downcast check ∅ ` v : pos will always succeed, because

(
Binop < (Id x) (Num 0)

)
must have

evaluated to (Bfalse).
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