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What do programs mean? They mean whatever the1 language definition says they do. So
the real question is: How do we specify, in a language definition, the meaning of the language’s
programs?

Remark. I’m starting to use the lecture notes from 2015, updating as I go. In addition to
outright mistakes, there may be references that are out of date, such as notes that something was
done in lecture—meaning a 2015 lecture. I’ll try to fix these before lecture, but I will miss some;
please point them out (a note on Piazza is a good method).

1 Logistics

• Start on the assignment!
We can tell how many people have run handin.

• The assignment is due 1 day before the drop deadline.

• If you can’t finish the assignment, you should probably drop the course.

• Run handin early and often!
(Even if you haven’t done a single problem yet!)

2 Dynamic semantics

Dynamic semantics is about how programs behave:

• Dynamic semantics tells you how to “step” a program.

• Or how to “evaluate” a program.

• These methods work a little differently, but they have the same purpose: they tell you what
your interpreter is supposed to do.

• 1. Syntax describes which sequences of symbols are reasonable.

• 2. Dynamic semantics describes how to run programs.

• 3. Static semantics describes what programs are.

Dynamic semantics is about how programs behave:

1We’ll assume that we know which language the program is written in, despite programs such as
http://ideology.com.au/polyglot/polyglot.txt.

1 2016/9/16

http://ideology.com.au/polyglot/polyglot.txt


§1 Logistics

• Dynamic semantics tells you how to “step” a program.

• Or how to “evaluate” a program.

• These methods work a little differently, but they have the same purpose: they tell you what
your interpreter is supposed to do.

• “Interpreter semantics”:
“to explain a language, write an interpreter for it.” . . . “When we finally have what we think
is the correct representation of a language’s meaning. . . ”

• If the interpreter you write defines the language, you cannot know whether it’s correct. (It’s
trivially correct, because it defines itself. “When the President does it, that means it is not
illegal.”)

• You can test it on programs, but tests can only show the presence of bugs, not their absence!

3 Why dynamic semantics?

Unlike syntax, where practically all language designers2 uses some variation of BNF grammars,
specifying which syntactically well-formed programs actually mean something, and what they
mean, is less settled.

Various methods have been used, with names like “axiomatic semantics”, “operational seman-
tics”, “natural semantics”, and “denotational semantics”. Within the programming languages re-
search community, there is lively competition amongst these methods. To most of the world,
though, this competition is off the radar: most languages’ semantics are specified informally. (Stan-
dard ML is probably the most popular formally defined language—and Standard ML is even less
“mainstream” than Scheme/Racket.)

In 311, we will focus on one method, operational semantics. Given a specification in opera-
tional semantics, it is relatively easy (compared to specifications using other methods) to write
an interpreter. Operational semantics has a rich mathematical foundation, which you would want
to understand to do research in programming languages, but you don’t need to understand that
foundation to turn operational semantics into interpreters.

The idea of trying to specify the meaning of a mathematical object (a program) through natural
language alone, rather than more “formally” (through logic and mathematics), calls to mind a
quotation:

“About the use of language: it is impossible to sharpen a pencil with a blunt axe. It is
equally vain to try to do it with ten blunt axes instead.” —Edsger Dijkstra

Formal mathematical language is not an absolute guarantee against mistakes or oversights in
defining the semantics (a serious mistake in SML’s formal definition went unnoticed for years), but
it, at least, gives us a point of reference. Rules in natural language are for people, not computers;
understanding a programming language shouldn’t require one to be a “language lawyer”.

2One exception: the designers of Algol 68, who tried to innovate in this area; it didn’t end well.
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4 Evaluation semantics

As I mentioned, operational semantics is closer to an interpreter than other methods for specifying
what a program does. There are different flavours of operational semantics; we’ll start with the
one that’s usually easier to understand, called evaluation semantics.

(That is, evaluation semantics is one kind of operational semantics, which is one method for
specifying dynamic semantics. But for now, just remember: what we’re going to do, right now, is
called evaluation semantics.)

The idea of evaluation semantics is that the dynamic behaviour—the dynamic “meaning” of a
program—is the value it computes, or equivalently, what it evaluates to. We expect that {+ 2 2} will
compute 4, or equivalently, will evaluate to 4.

For our very first example of evaluation semantics, we’ll follow the language “AE” of arithmetic
expressions (from Chapter 2 of PLAI). Its concrete syntax (BNF grammar) is:

〈AE〉 ::= 〈num〉
| {+ 〈AE〉 〈AE〉}
| {− 〈AE〉 〈AE〉}

And its abstract syntax (PLAI, p. 6) is:

(define-type AE
[Num (n number?)]
[Add (lhs AE?) (rhs AE?)]
[Sub (lhs AE?) (rhs AE?)])

However, we’ll use the concrete syntax to write the evaluation semantics. This allows programmers
to use our semantics to understand the language, provided they can read evaluation semantics
rules. The only people who should have to know what the abstract syntax looks like are the people
writing the interpreter.

Now, let’s write down a specification of the dynamic behaviour of this language, using the
method of evaluation semantics. First, we should ask: what is our goal? How will we know when
we have a complete (not necessarily good, but complete) specification? One answer (which is not
always the right answer, but will work just fine for this language) is: if we can specify the meaning
of all expressions that are syntactically well-formed (according to the EBNF for 〈AE〉), then we
have a complete specification.

Thus, we need to specify the meaning of each of the three syntactic cases (〈num〉, + and −)
in the EBNF. Since we’re going to use evaluation semantics, we need to specify what a 〈num〉
evaluates to, what a + evaluates to, and what a − evaluates to.

This language is so tiny that there’s only one reasonable way it can work: + should add, and −
should subtract. So we can focus on how to write down an evaluation semantics, rather than spend
time wondering if we’re making good design decisions.

We want to be really precise, so let’s try to be a little more precise than just saying “+ should
add, and − should subtract”. Just as CPSC 110 shows how to follow a data definition (for example,
if you need to write a function that takes a BST (binary search tree), you need to write a case for
‘false’ and a case for ‘(make-node . . . )’), let’s try to follow the BNF:

• we need to say what a number evaluates to,
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• we need to say what a + evaluates to, and

• we need to say what a − evaluates to.

This is a little vague, though, because we didn’t mention the subexpressions of + and −. Let’s fix
that, and also (in the first case) mention the specific number!

• we need to say what a number n evaluates to,

• we need to say what {+ ae1 ae2} evaluates to, and

• we need to say what {− ae1 ae2} evaluates to.

Here, ae1 stands for the first subexpression, and ae2 stands for the second subexpression.
Now let’s actually say (in English) what these things evaluate to. A number shouldn’t do any-

thing, so we’ll say that it evaluates to itself:

• A number n evaluates to n.

What should {+ ae1 ae2} evaluate to? Well, that depends on what ae1 and ae2 are. Or rather,
what they evaluate to. So let’s start there.

• If ae1 evaluates to n1, and ae2 evaluates to n2, then {+ ae1 ae2} evaluates to . . .

We want + to add, so it needs to add n1 to n2.

• If ae1 evaluates to n1, and ae2 evaluates to n2, then {+ ae1 ae2} evaluates to n1 + n2.

Now we can give meaning to − in the same way, resulting in something reasonably precise (it’s
still in English):

• A number n evaluates to n.

• If ae1 evaluates to n1, and ae2 evaluates to n2, then {+ ae1 ae2} evaluates to n1 + n2.

• If ae1 evaluates to n1, and ae2 evaluates to n2, then {− ae1 ae2} evaluates to n1 − n2.

4.1 Rules

We’re now very close to an evaluation semantics! In fact, all we have to do is rewrite the above
using some funny notation: Instead of “AE evaluates to n”, we’ll write “AE ⇓ n”. And instead of
“If. . . then . . . ”, we’ll use a horizontal line, like this:

ae1 ⇓ n1 ae2 ⇓ n2

{− ae1 ae2} ⇓ n1 − n2

Eval-sub

An inference rule, or rule for short, looks like

premise1 . . . premisem
conclusion

rule name
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The part below the line is called the conclusion, and the parts above the line are called the premises.
To the right of the line, we often write the name of the rule. We can read a rule as follows: To
derive the conclusion, we must satisfy each of the premises. In other words, if the premises are
satisfied, we have shown the conclusion. Or, very briefly, “if premises, then conclusion”.

This notation was invented in the 1930s by the logician Gerhard Gentzen, for the purpose of
formally expressing mathematical proofs. At the moment, we’re using this notation to talk about
what evaluation means in a (very small) programming language, but the notation is much more
general. The logical statements that appear as conclusions are called judgments.

4.1.1 When is a judgment derivable?

A judgment is derivable if we can get it by applying rules. You may want to think of “derivable” as
meaning “true”; this is okay, as long as you keep in mind that “truth” is entirely a matter of what
rules you have.

4.1.2 Premises and conclusions

Rules always have a conclusion, but they don’t have to have premises. In fact, to write down the
rule for our first case (“A number n evaluates to n”), we don’t need any premises:

n ⇓ n
Eval-num

Often, the evaluation rule for a syntactic form will have exactly one premise for each smaller
expression it contains. A number doesn’t contain any subexpressions, so the evaluation rule for
numbers doesn’t have any premises. On the other hand, {− ae1 ae2} has two subexpressions, so
its rule has two premises.

4.1.3 Applying rules

What can you do with a rule? You can apply it, by filling in its “meta-variables”. Here, our “meta-
variables” are n (in Eval-num), and ae1, ae2, n1, and n2 in Eval-add and Eval-sub. A meta-variable
is a placeholder: we can fill in ae1 and ae2 with 〈AE〉’s, and we can fill in n, n1 and n2 with
numbers.

This is easier to see with an example. Given the rule

n ⇓ n
Eval-num

we can apply it by plugging in an actual number for the meta-variable n:

7 ⇓ 7

Once we’ve applied Eval-num, we have an evaluation derivation of 7 ⇓ 7, and say that we have
derived 7 ⇓ 7.

Note that, unlike our EBNF grammar—where we wrote 〈AE〉 twice in the production for + to
refer to (possibly) different expressions—writing n twice in the rule Eval-num means that we have
to substitute the same number.
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We can similarly derive 6 ⇓ 6:

6 ⇓ 6

This gives us two derivations, one of 7 ⇓ 7 and one of 6 ⇓ 6, so we have enough derivations to
apply Eval-sub:

7 ⇓ 7 6 ⇓ 6

{− 7 6} ⇓ 1

We got this by looking at the rule Eval-sub, plugging in 7 for ae1, plugging in 6 for ae2, plugging
in 7 for n1, and 6 for n2. The conclusion of Eval-sub says “. . . ⇓ n1 − n2”, which—after plugging in
for n1 and n2—is . . . ⇓ 7− 6, which is . . . ⇓ 1.

Notice that this derivation of {− 7 6} ⇓ 1 looks like a tree (oriented the natural way, with
the root at the bottom, rather than the usual computer science way). And in fact, derivations are
also called derivation trees. This is a nice feature of Gentzen’s notation: derivations “fit together”
visually.

Here’s a slightly larger example:

20 ⇓ 20 2 ⇓ 2

{+ 20 2} ⇓ 22

7 ⇓ 7 6 ⇓ 6

{− 7 6} ⇓ 1

{− {+ 20 2} {− 7 6}} ⇓ 21

It’s often useful to write the names of the rules being applied (later languages will have more than
just three rules!):

20 ⇓ 20
Eval-num

2 ⇓ 2
Eval-num

{+ 20 2} ⇓ 22
Eval-add

7 ⇓ 7
Eval-num

6 ⇓ 6
Eval-num

{− 7 6} ⇓ 1
Eval-sub

{− {+ 20 2} {− 7 6}} ⇓ 21
Eval-sub

4.2 Evaluation rules for AEs

In PL research papers, it’s customary to collect all the evaluation rules together, and throw one
giant figure at the reader. Fortunately, we only have three rules.

n ⇓ n
Eval-num

ae1 ⇓ n1 ae2 ⇓ n2

{+ ae1 ae2} ⇓ n1 + n2

Eval-add
ae1 ⇓ n1 ae2 ⇓ n2

{− ae1 ae2} ⇓ n1 − n2

Eval-sub

The section “When is a judgment derivable?”, above, may help with the following exercises.

Exercise 1. Using the above rules, is {∗ 1 2} ⇓ 3 derivable?
How about {∗ 1 2} ⇓ 2?
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Exercise 2. Suppose we added a rule

ae1 ⇓ n1 ae2 ⇓ n2

{∗ ae1 ae2} ⇓ 2
Eval-mult

Now, using the 3 rules above and Eval-mult, is {∗ 1 2} ⇓ 2 derivable?

5 From the rules to an interpreter

Now we’ll write an interpreter that follows our evaluation rules. This interpreter will turn out to do
the same thing as PLAI’s interpreter from Chapter 2. (2016 note: Don’t worry if you haven’t read
that chapter.) The difference is how we got there. Once you understand how to write interpreters
based on evaluation rules, you can take evaluation rules you’ve never seen before—and that may
define a language with features you’ve never heard of—and write an interpreter that follows those
rules.

You won’t get that skill instantly just from this one tiny language, but you have to start some-
where! And it’s easier to start here than with something like The Definition of Standard ML.

5.1 Restating the rules in abstract syntax

It’s easier to work with abstract syntax—the “AE” defined with define-type—than concrete syntax,
so our interpreter will accept programs in abstract syntax. You can learn to mentally translate
between concrete and abstract syntax, but for now, let’s explicitly translate the rules to abstract
syntax. We just have to change all the AEs, inserting the constructors Num, Add and Sub.

(Num n) ⇓ n
Eval-num

ae1 ⇓ n1 ae2 ⇓ n2

(Add ae1 ae2) ⇓ n1 + n2

Eval-add
ae1 ⇓ n1 ae2 ⇓ n2

(Sub ae1 ae2) ⇓ n1 − n2

Eval-sub

This shows something interesting, though: the animals on each side of the “evaluates to” arrow (⇓)
are not the same kind of animal.3 In Eval-num, we have an AE, (Num n), on the left of ⇓, but a
plain number n on the right. In the concrete syntax, we didn’t write Num explicitly, so we couldn’t
see this difference. We could have chosen, instead, to “evaluate cats to cats” and produce an AE on
the right, but it’s a little more convenient to produce a number. (Later in 311, we’ll define other
flavours of operational semantics that don’t work this way.)

The job of writing an interpreter for AEs boils down to writing a function that answers this
question:

“Given an ae, find a number n such that ae ⇓ n.”

During lecture, we wrote the following function:

(define (interp ae)

(type-case AE ae

[Num (n) n]

[Add (ae1 ae2)

3In honour of my undergrad discrete math professor’s advice: “You must always ask yourself: what kind of an animal
is it?”
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(let ([n1 (interp ae1)]

[n2 (interp ae2)])

(+ n1 n2))]

[Sub (ae1 ae2)

(let ([n1 (interp ae1)]

[n2 (interp ae2)])

(- n1 n2))]

))

Our interp function behaves the same as the calc function in PLAI, but our function has more
let-bindings. This is more verbose, but strengthens the connection between our interpreter and
the rules. For example, the expression (+ n1 n2) is a direct Racket translation (parentheses and a
prefix operator +) of the n1 + n2 that appears in the conclusion of Eval-add.
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