
CPSC 311:
Lazy evaluation (DRAFT)

(“lec-lazy”)

Joshua Dunfield

University of British Columbia

November 21, 2016

1 Evaluation strategies: review and update

1.1 Review

Earlier in the course, we came up with two strategies for evaluating function application (App e1 e2):
the expression strategy, in which the function argument e2 is substituted for x in the body of
(Lam x eB), and the value strategy, in which the function argument e2 is evaluated immediately
and the resulting value v2 is substituted for x in eB.

Under the expression strategy, we evaluate e2 as many times as (Id x) is evaluated; under the
value strategy, we evaluate e2 exactly once. The value strategy is usually more efficient than the
expression strategy, but the expression strategy is more efficient if (Id x) is not evaluated. For
example, in (

App (Lam x (Num 0)) e2
)

there is no (Id x) in the body of the Lam, so (under the expression strategy) the argument e2 will
never be evaluated.

Exercise 1. Give a slightly larger (and hopefully less contrived) example of a function appli-
cation for which the expression strategy is more efficient than the value strategy. (Hint: apply a
function of two arguments, that is, (Lam x (Lam y . . .)).)

1.2 Update for environment-based evaluation

We have mostly used the value strategy, and we stayed with that strategy in developing the
environment-based evaluation rule for App, Env-app; for clarity, we’ll now call that rule Env-app-
value:

env ` e1 ⇓ (Clo envold (Lam x eB)) env ` e2 ⇓ v2 x=v2, envold ` eB ⇓ v

env ` (App e1 e2) ⇓ v
Env-app-value

To facilitate experimenting, I’m leaving the value-strategy application App alone, but adding an
expression-strategy application App-expr.

To implement the expression strategy, we can use

env ` e1 ⇓ (Clo envold (Lam x eB)) x=(Clo env e2) , envold ` eB ⇓ v

env ` (App-expr e1 e2) ⇓ v
Env-app-expr

1 2016/11/21



§1 Evaluation strategies: review and update

As we did for Lam, we are using a closure to save the current environment so that when (Id x) is
evaluated, we can evaluate e2 under env rather than some later environment.

For historical reasons, a closure that is used in this way is called a thunk.
The rule Env-app-expr (for App-expr) is implemented in env-lazy.rkt.
Examples:

; for app-expr, do we evaluate the argument twice?

(unparse (interp (parse ’{App-expr {Lam x {+ x x}} {+ 1 2}})))

; does it work when the argument is a Lam?

(unparse (interp (parse ’{App-expr {Lam f {App f 5}} {Lam y {+ y y}}})))

; does it work when the argument has a free variable (z)?

(unparse (interp (parse ’{Let z 100

{App-expr {Lam f {App f 5}}

{Lam y {+ y z}}}})))

; are we still doing lexical scope?

(unparse (interp (parse ’{Let z 100

{App-expr {Lam f {Let z 444 {App f 5}}}

{Lam y {+ y z}}}})))

2 Lazy evaluation

Environments make it possible to implement a third evaluation strategy, which I think is better than
the expression strategy. Whether it’s better than the value strategy is unclear.

It’s useful to pause and relate my terminology in this course to terminology that you may come
across elsewhere. I invented my own terminology because I think it’s less confusing, but you should
be aware of the more common usage:

invention CPSC 311 name “formal” names “popular” names other names

1950s value strategy call-by-value, CBV eager evaluation,
strict evaluation

[applicative order]

1960 expression strategy call-by-name, CBN by name [normal order]

1971–76 lazy evaluation call-by-need lazy evaluation

Brackets, e.g. “[applicative order]”, indicate that there is no consensus that those terms are
being used accurately, and that many people will (probably correctly) object and reserve those
terms for different concepts. I mention them because you may come across them, and they aren’t
entirely wrong: applicative order is more like the value strategy than it is like the expression strategy.

Also, people often say “evaluation order” rather than “evaluation strategy”. But I prefer “strat-
egy”, at least in 311, because it’s not just the order in which expressions are evaluated: it’s also
whether they’re evaluated at all.

2 2016/11/21



§2 Lazy evaluation

2.1 Overview

From a distance, lazy evaluation looks like the expression strategy:

• function arguments are not evaluated immediately;

• function arguments are only evaluated when used.

The difference from the expression strategy is in what happens when the argument is evaluated,
if it is evaluated:

• The expression strategy evaluates the argument, but doesn’t remember the result. So if it sees
(Id x) again, it evaluates the argument again.

• Lazy evaluation remembers the result of evaluating the argument. If it sees (Id x) a second
(or third. . . ) time, it returns the result without evaluating it again.

We can’t use the environment to remember the result, however, because the environment is
only passed up the evaluation derivation, not “threaded through”. But earlier, we added support
for mutable references (boxes), which live in a store that is threaded through! So we can use the
store to remember our results.

(By the way, this is roughly how lazy evaluation actually works in languages that use it, like
Haskell.)

2.2 Rules

We want to put the result of evaluating an argument in the store; since the store is what survives
leaving a lexical scope, we also need to remember in the store whether we have evaluated that
argument. The environment will refer to the store, using a location.

I left out the store from the above rules, so let’s put that in Env-app-expr and then rewrite
Env-app-expr to be lazy.

env; S ` e1 ⇓ (
Clo envold (Lam x eB)

)
; S1 x=(Clo env e2), envold; S1 ` eB ⇓ v; S2

env; S ` (App-expr e1 e2) ⇓ v; S2
Env-app-expr

I’ll use “Lazy-thk” for the thunk we’re creating.

env;S ` e1 ⇓ (
Clo envold (Lam x eB)

)
;S1 ` fresh for S1

x=(Lazy-ptr `) , envold;
`.(Lazy-thk env e2) , S1 ` eB ⇓ v;S2

env;S ` (App-lazy e1 e2) ⇓ v;S2
Env-app-lazy

In the second premise of Env-app-lazy:

1. We bind x to (Lazy-ptr `). Since the environment isn’t mutable, x will always be bound to
(Lazy-ptr `) for the entire time that x is in scope.

2. We extend the store with a new location ` containing (Lazy-thk env e2).

3 2016/11/21



§2 Lazy evaluation

Note that we haven’t evaluated e2 yet—and if evaluating eB does not evaluate (Id x), we never
will.

When we evaluate (Id x), we will look it up (Env-id) and evaluate what we find. The environ-
ment (not the store!) has x=(Lazy-ptr `), so we find (Lazy-ptr `) and evaluate that.

We need a rule for the case where we haven’t evaluated the argument yet. In that case, looking
up ` in the store will give a Lazy-thk. We evaluate e2 under the environment that Env-app-lazy
saved, resulting in a value v, and use update-loc to replace ` with v:

lookup-loc(S, `) = (Lazy-thk envarg e2) envarg;S ` e2 ⇓ v;S1 update-loc(S1, `, v) = S2

env;S ` (Lazy-ptr `) ⇓ v;S2
Env-lazy-ptr

We also need a rule for the case where we already applied Env-lazy-ptr to `. In that case, looking up
` in the store will not give a Lazy-thk, but some value—the v that we got while applying Env-lazy-ptr.

lookup-loc(S, `) = v v 6= (Lazy-thk · · · · · ·)
env;S ` (Lazy-ptr `) ⇓ v; S

Env-lazy-ptr-done

(unparse (interp (parse ’{App-lazy {Lam x {+ x x}} {- 10 1}})))

2.3 Ideology

Evaluation strategy, like typing, is one of the most enduring controversies in programming language
design. The controversy began the moment there was more than one evaluation order:

The first call-by-name language, Algol 60, also supported call-by-value. It seems that
call-by-value was the language committee’s preferred default, but Peter Naur, the editor
of the Algol 60 report, independently reversed that decision—which he said was merely
one of a “few matters of detail”. A committee member, F.L. Bauer, said this showed
that Naur “had absorbed the Holy Ghost after the Paris meeting. . . there was nothing
one could do. . . it was to be swallowed for the sake of loyalty.” (From Dunfield (2015),
“Elaborating evaluation-order polymorphism”; quotations from Wexelblat (1981), His-
tory of Programming Languages I.)

(There was also some argument about whether Naur had independently decided to include
recursion in Algol-60, but my reading is that he didn’t do that—the committee had agreed to
support recursion, but may have had arguments over details.)

Later developments continued to be full of ideology. Lazy evaluation (under the name call-by-
need) was introduced in a 1971 PhD thesis, and first implemented (twice, mostly independently,
I believe) in 1976. One of the 1976 papers has the rather opinionated title “CONS Should Not
Evaluate its Arguments”, only softened slightly in the paper itself: “we have uncovered a critical
class of elementary functions which probably should never be treated as strict: the functions which
allocate or construct data structures.” I suspect that not all ML programmers would agree. Nor
would users (at least, designers) of Lisp, the language used in the 1976 paper: neither Lisp nor its
descendants Scheme and Racket are lazy.

These controversies are (partly) grounded in legitimate disagreements about design tradeoffs
between the value strategy (eager evaluation) and lazy evaluation:

• The value strategy trades speed in one, possibly uncommon case—the case where the argu-
ment isn’t used—for simplicity.

4 2016/11/21



§2 Lazy evaluation

• Lazy evaluation trades simplicity for speed, but also trades space for speed: the many thunks
that have to be created take up space (and slow down garbage collection) even if they are
never evaluated. Reasoning about how much space is used is difficult; for example, I believe
that the Haskell community relies on space profilers to debug “space leaks” that result from
thunks being built that are never needed.

• Lazy evaluation sometimes trades actual improvement for apparent improvement: if the ex-
pression whose evaluation is being avoided is simple, it would be faster to evaluate it without
creating a thunk—even if the argument is never used.

There are certainly cases where lazy evaluation is superior, but opponents of lazy evaluation
argue that these cases can be handled by explicit programmer-controlled laziness instead. That is,
laziness should be an option that must be asked for explicitly, rather than the default.

2.4 Function application vs. the whole language

The rules we’ve developed add lazy function application, without changing any other language
constructs. Languages with built-in laziness usually don’t stop there. For example, Haskell is
entirely lazy: if you add two expressions with +, the addition won’t be performed unless the result
is “demanded” (such as by printing the value to the user).

5 2016/11/21


	
	Review
	Update for environment-based evaluation

	
	Overview
	Rules
	Ideology
	Function application vs. the whole language


